Publications

Turbulent Relaxation to Equilibrium in a Two-Dimensional Quantum Vortex Gas

Turbulent Relaxation to Equilibrium in a Two-Dimensional Quantum Vortex Gas

M. Reeves et. al

Phys. Rev. X 12, 011031

In this work, we explored the relaxation of initially non-equilibrium configurations of vortices. Impressively, the vortex configurations in equilibrium were found to closely match the predictions of the point vortex model.

Read More
Universal dynamics in the expansion of vortex clusters in a dissipative two-dimensional superfluid

Universal dynamics in the expansion of vortex clusters in a dissipative two-dimensional superfluid

Stockdale Oliver R. et al, 2020
Physical Review Research, 2, 3

A large ensemble of quantum vortices in a superfluid may itself be treated as a novel kind of fluid that exhibits anomalous hydrodynamics.

Read More
Quantitative Acoustic Models for Superfluid Circuits

Quantitative Acoustic Models for Superfluid Circuits

Gauthier Guillaume et al, 2019
Physical Review Letters, 123, 26

We experimentally realize a highly tunable superfluid oscillator circuit in a quantum gas of ultracold atoms and develop and verify a simple lumped-element description of this circuit.

Read More
Giant vortex clusters in a two-dimensional quantum fluid

Giant vortex clusters in a two-dimensional quantum fluid

Gauthier Guillaume et al, 2019
Science, 364, 6447, pp. 1264-1267

Adding energy to a system through transient stirring usually leads to more disorder. In contrast, point-like vortices in a bounded two-dimensional fluid are predicted to reorder above a certain energy, forming persistent vortex clusters.

Read More