Guillaume Gauthier, Matthew T. Reeves, Xiaoquan Yu, Ashton S. Bradley, Mark A. Baker, Thomas A. Bell, Halina Rubinsztein-Dunlop, Matthew J. Davis and Tyler W. Neely

Adding energy to a system through transient stirring usually leads to more disorder. In contrast, point-like vortices in a bounded two-dimensional fluid are predicted to reorder above a certain energy, forming persistent vortex clusters. In this study, we experimentally realize these vortex clusters in a planar superfluid: a 87Rb Bose-Einstein condensate confined to an elliptical geometry. We demonstrate that the clusters persist for long time periods, maintaining the superfluid system in a high-energy state far from global equilibrium. Our experiments explore a regime of vortex matter at negative absolute temperatures and have relevance for the dynamics of topological defects, two-dimensional turbulence, and systems such as helium films, nonlinear optical materials, fermion superfluids, and quark-gluon plasmas.

You can freely access the full text here (link is external).

The pdf version of the text can also be directly downloaded.

Previous
Previous

Quantitative Acoustic Models for Superfluid Circuits

Next
Next

Phase and micromotion of Bose-Einstein condensates in a time-averaged ring trap