Shear-Induced Decaying Turbulence in Bose-Einstein Condensates
We study the creation and breakdown of a quantized vortex shear layer forming between a stationary Bose-Einstein condensate and a stirred-in persistent current. Once turbulence is established, we characterize the progressive clustering of the vortices, showing that the cluster number follows a power law decay with time, similar to decaying turbulence in other two-dimensional systems. Numerical study of the system demonstrates good agreement of the experimental data with a point vortex model that includes damping and noise. With increasing vortex number in the computational model, we observe a convergence of the power-law exponent to a fixed value.