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Abstract

Research on degenerate quantum gases of dilute atomic gases has become a well es-

tablished field in modern physics and revealed many astonishing phenomena. The

first experiments on Bose and Fermi gases at low temperatures aimed to prove the

predictions of quantum mechanics on a macroscopic scale. Since then we make use

of Bose and Fermi gases and mixtures of any combination to model other many body

systems. A property of Bose Einstein condensates is superfluidity which we want to

investigate further in toroidal potentials with a new apparatus which can produce

an all-optical BEC. This means trapping thermal atoms in an optical dipole trap

and cooling the sample by evaporation into the quantum degenerate regime. This

new technique was first successfully demonstrated by M.D. Barrett et al. in 2001

and promises to be faster and simpler than the well established and common way of

evaporation in magnetic traps.

A new apparatus was built by the author and we report on the experimental details of

the trapping of 87Rb atoms from a hot vapour and cooling them in a magneto-optical

trap, and further evaporation to quantum degeneracy in a crossed optical dipole trap

operating at a wavelength of λ = 1064nm, with accurate control of the power in

both beams via a feedback loop. The evaporation of neutral atoms of 87Rb in far red

detuned optical dipole traps using linearly polarised laser light is spin independent,

and mixed spinor condensates of the F=1 manifold can be formed. As an empirical

technique we found by applying a magnetic gradient field during the final evaporation

that we can selectively populate mF spin states or prepare mixtures. This intriguing

mechanism was found earlier as well by M. S. Chang, but is yet not fully understood

and subject of our future research. We can now routinely prepare an almost pure con-

densate containing up to 7000 atoms in the condensed phase purely in the mF = 0

spin state.

This thesis contains the theoretical framework of Bose-Einstein condensation with

in mean-field theory, the concepts of cooling of atoms in magneto-optical traps, the



trapping and evaporation in optical dipole traps and the experimental realisation. In

the future this experiment will be extended by a fast scanning dipole trap to apply

arbitrary time averaged potentials of more complex geometries, such as toroidal traps

to study the effects of superfluidity in a periodic potential. The production of toroidal

traps and cold atoms in such a trap are outlined in this thesis.
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1 Introduction

1.1 Overview

Today 16 years after the first observation of Bose-Einstein condensates (BEC) in dilute

atomic vapours [1, 2], the community of physicists working all over the world theoret-

ically and experimentally on this intriguing phenomenon is still growing. The basic

theory of BECs and the concepts of forming a BEC are well established [1, 2, 3, 4, 5].

Its prediction for an ideal gas was made in 1924/25 by A. Einstein based on ideas

of S.Bose [6, 7]. What makes BEC interesting is that the ground state is macro-

scopically occupied and the condensed particles form a “giant” matter wave. Us-

ing the so called mean-field theory one can express the condensate wave function

as Φ(r, t) = φ(r)exp(−iµt/h̄), where µ denotes the chemical potential and φ is nor-

malised to the total number of particles. This wave function is a solution of the Gross-

Pitaevski equation (GPE), a “nonlinear Schrödinger equation”. The non linearity

comes from the mean-field term that is proportional to the density n(r) = φ2(r).

Most confining traps for real gases are well approximated by harmonic potentials.

With the trapping frequency ωho we find the characteristic length scale aho =
√

h̄/mωho

of the order of a few microns. This is small in our daily life, but gigantic for quantum

mechanical systems. The verification of the wave character of BEC was therefore an

important experiment [8]. Moreover a BEC is a super fluid, which means it flows

without friction, as observed first in liquid helium [9]. An impressive demonstration

was given by Reppy [10], who investigated currents of liquid helium in toroidal vessels

and did not observe any decay of the current over a period of 12 hours. It was London

1



2 1 Introduction

[11], who discovered the link between the superfluidity of helium and Bose-Einstein

condensation, which is the macroscopic occupation of a ground state in both systems.

Helium is a strongly interacting system and therefore a theory of superfluid helium

is hard to derive. BECs in dilute atomic gases are perfect systems for the theoretical

model of Bogoliubov [12]. This model describes a weakly interacting Bose gas through

its density and a small s-wave scattering length aS. Improvements in experimental

techniques, refining the theory of superfluidity in BECs and quantitative agreement

led to a better understanding. In a couple of crucial experiments the superfluid prop-

erties of BECs like critical velocity, vortices and vortex lattices were demonstrated in

[13, 14, 15, 16, 17, 18, 19]. However, there are still many questions to be answered.

1.2 Motivation for an all optical BEC and for toroidal

traps

In this project the aim is to produce an all optical BEC and to construct smooth

toroidal traps for neutral atoms in order to study superfluidity.

Toroidal traps represent an ideal system for quantitative studies of the emergence of

superfluidity. These toroidal traps have to be smooth and small enough in order to

enable studies of multiply connected BECs in a quantitative way. Many techniques

have already been developed to achieve these aims. Experimental techniques such as

polarisation gradient cooling, velocity selective coherent population trapping, Raman

cooling and evaporative cooling in optical dipole force traps, were developed to reach

the BEC phase transition. M.D. Barrett et al. [20] were the first to demonstrate the

formation of a BEC in an optical dipole force trap. The advantages of this method are

the much faster formation of a BEC than in a magnetic trap and spin independence.

The faster evaporation relaxes considerably the requirement for long trap lifetimes;

or in case of long trap life times it gives more time for experiments. Magnetic traps

confine only one or two spin projections and therefore spinor condensates [21] are
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formed with this technique. An early idea, even before the first BEC, of axially

symmetric traps can be found in [22]. The proposal was to use toroidal traps as

storage rings for cold atoms. The proposals for toroidal traps with axial symmetry

for confining BECs range from magnetic traps [23, 24, 25], RF-dressed magnetic traps

[26] to the use of spatial light modulators [27]. In order to study multiply connected

BECs these traps have to be on the order of a few µm in diameter to be able to

test which theoretical predictions like excitations, solitons or spinors to name some

[28, 29, 30, 31]. These small trap geometries are realisable with far off resonant dipole

traps of overlapped red and blue detuned laser beams [32]. Also Laguerre-Gaussian

are proposed to be used to from such ring traps [33]. The first evidence of persistent

currents of a superfluid Bose gas was demonstrated by K. Helmerson [34] in the group

of W.D. Phillips where the toroidal trap was made of a magnetic potential overlapped

with a blue detuned optical dipole trap at the center of symmetry. Another method

for a ring shaped trap is proposed by S. Schnelle et al. [35] which suggests a fast

scanning beam trap with a 2D-AOM.

1.3 Thesis outline

The authors work to build an experiment to create an all optical BEC is presented

in the following chapters:

Chapter 2: Theoretical background on Bose-Einstein condensation

In the second chapter we will discuss the fundamental concept of Bose-Einstein con-

densation in a harmonic trap. By evaluating the statistics of a trapped bosonic gas

we can derive an expression for the critical temperature Tc where Bose Einstein con-

densation occurs. Solving the “nonlinear Schrödinger equation” using a mean field

approach allows us to find an expression for the density profile of a Bose-Einstein

condensate in the Thomas-Fermi limit.
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Chapter 3: Interaction of light with matter

We will focus on the interaction of light with matter in the third chapter and discuss

the concepts of trapping and cooling neutral atoms in a near resonant and far detuned

laser field. The former is based on a momentum transfer by the absorption of a photon

by an atom whereas the latter is based on a decrease of the ground state energy and

therefore creating an attractive potential if the laser field is red detuned.

Chapter 4: Experimental set up

Experimental details such as the design of the experiment including the vacuum

system, the laser system for the MOT, the control of the power of the dipole traps

and the imaging are described in detail in chapter 4.

Chapter 5: MOT

In chapter 5 we present the operation of the magneto optical trap in the current exper-

iment. The first MOT was built with free space propagating beams and was replaced

later with fibre coupled beams which was a major improvement of the experiment

leading to better stability and reproducibility.

Chapter 6: Optical dipole traps

Chapter 6 will first focus on the general concept and ideas of the evaporation of

neutral atoms in an optical dipole trap. After the description of the properties of our

traps two schemes for the evaporation are presented and discussed. An all optical

Bose-Einstein condensate was successful and was identified as a spinor condensate of

the F = 1 manifold. A technique to prepare a particular mF state is described as

well.



1.3 Thesis outline 5

Chapter 7: Towards a scanning dipole trap

A brief overview for a proposal of building a scanning beam trap is given in chapter

7. We also briefly discuss the physics of a bosonic gas at low temperatures in different

regimes of interactions in a toroidal trap.

Chapter 8: Conclusions and outlook

A discussion of the achievements during the author’s work and an outlook is given in

the last chapter.



6 1 Introduction



2 Theoretical background on

Bose-Einstein condensation

2.1 Bose-Einstein condensation

In this chapter we discuss theoretical concepts behind the physics of Bose-Einstein

condensation. First let us discuss the statistical physics of an ideal bosonic gas devel-

oped by Bose in 1924 [6] and supported by A. Einstein [7]. We derive an expression

to calculate a critical temperature where Bose-Einstein condensation occurs and an

expression for the number of particles in a Bose-Einstein condensate. The ground

state is occupied macroscopically and we have to solve a Hamiltonian for N interact-

ing particles. Numerical simulations for a number less than 104 can be calculated but

for larger numbers these calculations become impractical if not impossible. However,

a mean-field approximation provides an approach to calculate the ground state of

a system and as well its thermodynamics. In the following sections we discuss the

statistical and quantum mechanical properties of a BEC, following the theoretical

description of F. Dalfovo et al [36] and [37].

2.1.1 Statistical considerations

For simplicity let us consider a harmonic potential, which approximates well confining

potentials for atoms in real experiments, and let us draw some important conclusions

from this model system. For a harmonic potential in three dimensions where the

7
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energy U of a particle with mass m is given by

U(~r) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (2.1)

with trapping frequencies ωi, the energy eigenstates of a single particle are well known

and given by

ǫnxnynz
=

(

nx +
1

2

)

h̄ωx +

(

ny +
1

2

)

h̄ωy +

(

nz +
1

2

)

h̄ωz (2.2)

where ~n = {nx, ny, nz} are non-negative integers and h̄ is Plancks constant divided

by 2π. The number of particles of a bosonic ideal gas in an energy state Ei at any

temperature T is given by the distribution

Ni(Ei) =
1

exp
(

Ei−µ
kBT

− 1
) (2.3)

which is known as the Bose-Einstein distribution, where µ denotes the chemical po-

tential, kB the Boltzmann constant and T the temperature. The total number of

particles and the total energy of the system are conserved and we write them as

N =
∑

i

N(Ei) (2.4)

E =
∑

i

EiN(Ei). (2.5)

For convenience we separate from the total number of particles the lowest eigenstate

ǫ000 of the sum in equation (2.4) and with N0 we denote the number of particles in

the ground state of the system. Thus we rewrite equation (2.4)

N = N0 + Nth = N0 + lim
µ→0

∑

~n 6=0

1

exp(Ei−µ
kBT

− 1)
(2.6)

where Nth are particles in excited states. It is difficult to evaluate the infinite sum

but for N → ∞ we can replace the sum by an integral,

N −N0 =

∫ ∞

0

dnxdnydnz

exp[βh̄(ωxnx + ωyny + ωznz)] − 1
(2.7)
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This semiclassical approximation is accurate for large numbers of particles and exci-

tation energies larger than the level spacing kBT >> h̄ω. With changing the variables

in (2.7) to βh̄ωini = ñi we can evaluate exactly the integral and find

N −N0 = ζ(3)

(
kBT

h̄ω

)3

, (2.8)

where ζ denotes the Riemann zeta function and ω the geometrical frequency ω =

(ωxωyωz)
1/3. The transition temperature occurs where N0 → 0 and we find for the

critical temperature

kBT
0
c = h̄ω

(
N

ζ(3)

) 1
3

. (2.9)

This critical temperature is well defined in the thermodynamic limit letting N → ∞
and h̄ω → 0 while keeping the product Nω3 constant and within this limit we find

for the fraction of the particles in the ground state for T < Tc

N0

N
= 1 − ζ(3)

(
kB
h̄ω

)3
T 3

N
= 1 − T 3

T 3
c

(2.10)

as depicted in figure 2.1 and verified in some experiments [38, 39]. From equation

(2.10) we see that even below the critical temperature Tc, where Bose-Einstein con-

densation occurs, only a fraction of the particles condense into the ground state.

We find the same result, if we calculate the density of thermal particles using the

semiclassical approximation, where we integrate in the thermodynamical limit over

momentum space nT (r) =
∫
dp(2πh̄)−3[exp(βǫ(p, r)) − 1]−1, with the semiclassical

energy in phase space ǫ(p, r) = p2/2m + Vext and find for the density in phase space

nT (r)λ3
dB = PSD (2.11)

with the thermal wavelength λdB =
√

2πh̄2/mkBT . Bose Einstein condensation oc-

curs at T = Tc and the phase space density becomes PSD ∼ 2.6. Therefore we see

from equation (2.11) that Bose Einstein condensation occurs at high densities and low

temperatures. The phase space diagram in figure 2.2 shows the density of particles

versus the thermal wavelength (temperature) for 87Rb. The dashed lines correspond
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Figure 2.1: The relative number of condensed particles as a function of the tempera-

ture calculated from equation 2.10. It can clearly be seen that that condensation only

begins at T = Tc. For T = 0.37Tc the fraction of condensed particles is N0/N = 0.95.

to a constant phase space density. At room temperature the phase space density is on

the order of 10−18 and the cooling in a magneto-optical trap lowers the temperature

by five orders of magnitude. Also a higher density of the atoms being trapped in a

magneto optical trap means a higher phase-space density on the order of 10−7−10−6.

Further cooling by evaporation raises the density of the atomic sample and lowers the

temperature rasising the phase space density above the critical density of 2.6 where

Bose-Einstein condensation occurs. Neutral atoms can be trapped in magnetic traps

or optical dipole traps. The reader is referred to chapter 6 for a more detailed dis-

cussion of the differences of the two trapping techniques and a closer description of

experimental techniques of our experiment.

The description of the noninteracting harmonic-oscillator as discussed above is

only a guide and for a more comprehensive description one needs to take two other

effects into account: the finite size of the system, and interactions among the con-

stituents of the gas [37]. With these considerations in mind, in the next section we
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derive a method to calculate the density of the gas in the ground state.

2.1.2 Quantum mechanical considerations

A Bose-Einstein condensate is a many-body system which can be very successfully

described in a mean field approach. We briefly discuss this approach in this section

following closely the more detailed description in [37]. We consider an interacting

bosonic gas of N particles in an external potential Vext. The Hamiltonian of this

system is given by

Ĥ =

∫

dr Ψ̂†(r)

[

− h̄2

2m
∇2 + Vext(r)

]

Ψ̂(r)+
1

2

∫

dr dr′ Ψ̂†(r)Ψ̂†(r′)V (r−r′)Ψ̂(r′)Ψ̂(r)

(2.12)

where Ψ̂(r) and Ψ̂†(r) are the bosonic creation and annihilation field operators, and

V (r − r′) is the interaction potential of two bodies. Bogoliubov formulated an ap-

proximation based on the idea of separation of the condensate fraction of the field

operator which can be written as Ψ̂(r) =
∑

α Ψα(r) aα with single particle wave func-

tions Ψα(r) and bosonic creation and annihilation operators a†α and aα. In order to

describe the general case of a non-uniform gas and time-dependent configuration we

write for the field operator

Ψ̂(r, t) = Φ(r, t) + Ψ̂′(r, t) (2.13)

in the Heisenberg representation. The complex function Φ(r, t) is defined as the

expectation value of the field operator Φ(r, t) =
〈

Ψ̂(r, t)
〉

, and fixes the density of

the condensate through its modulus n0 =
∣
∣
∣Φ̂(r, t)

∣
∣
∣

2

. Therefore the function Φ(r, t)

can be called the “wave function of the condensate” although it is a classical field

having the meaning of an order parameter. We insert the field operator into equation

2.12 and treat the operator Ψ̂′ as a small perturbation and neglect it. Thus using the

Heisenberg equation the many-body Hamiltonian becomes

ih̄
δ

δt
Ψ̂(r, t) =

[

Ψ̂, Ĥ
]

=

[

− h̄2∇2

2m
+ Vext(r) +

∫

dr′Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

]

Ψ̂(r, t)

(2.14)
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We replace V (r′ − r), the atom-atom interaction term with the two body potential

V (r′ − r) = gδ(r′ − r) which is characterised by the coupling parameter g and is

related to the s-wave scattering length a by

g =
4πh̄2a

m
(2.15)

and finally arrive at the Gross-Pitaevskii equation (GPE)

ih̄
∂

∂t
Φ(r, t) =

(

− h̄2∇2

2m
+ Vext(r, t) + g |Φ(r, t)|2

)

Φ(r, t). (2.16)

The three terms on the right hand side of this equation are the kinetic energy, the

potential energy and the interaction energy. Of particular interest is the ratio of

the interaction energy and the kinetic energy. Typical densities of dilute gases are

on the order of 1013 to 1015cm−3 and we call a system dilute if n |a|3 ≪ 1, where

n is the average density of the system. The kinetic energy is on the order of Nh̄ω

e.g. Ekin ∝ N/a−2
ho , whereas the energy of the interaction is of the order of gNn e.g

Eint ∝ N2 |a| /a3ho. So we find for the ratio of the two energies

Eint

Ekin

∝ N |a|
aho

. (2.17)

Changing the sign and amplitude of the coupling parameter g can significantly change

the density of the cloud. For positive values of g the coupling is repulsive and for

negative values it is attractive. This has of course a significant effect on the dynamics

and thermodynamics as well. The condensate wave function of the ground state is of

the form Φ(r, t) = φ(r)exp(−iµt/h̄), with the chemical potential µ and a real function

φ normalised to the total number of condensed bosons N0 = N =
∫
drφ2. Therefore

the GPE 2.16 becomes
(

− h̄2∇2

2m
+ Vext(r) + gφ2(r)

)

φ(r) = µφ(r). (2.18)

For g 6= 0 one has to solve the GP equation 2.18 numerically to find the density. For no

inter-particle interactions, e.g. g = 0, the GP equation 2.18 turns into −h̄2/(2m∇2)+

Vext of similar form of the time independent Schrödinger equation for a single particle
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but not to be mistaken with the SE. Solutions of the SE are quantum states of the

(N body) system, whereas solutions of the GPE are classical fields which belong to

degenerated states of the N body system. In a harmonic potential 2.1 the solution is

a Gaussian function normalised to the numberof particles

φ(r) =
√
N φ0(r) =

√
N

mω

πh̄
exp

[

−m

2h̄

∑

ωir
2
i

]

. (2.19)

Another approximation, the so called Thomas-Fermi limit, is given in the case of

repulsive interactions g > 0 and for Na/aho ≫ 1. In this particular case we can

neglect the term of the kinetic energy

(
Vext(r) + gφ2(r)

)
φ(r) = µφ(r) (2.20)

and we find for the density profile

n(r) = φ2(r) =
µ− Vext(r)

g
(2.21)

only valid for regions where µ > Vext and n = 0 elsewhere [36]. From this equation

we directly calculate from the normalisation condition the chemical potential

µ =
h̄ω

2

(
15Na

aho

) 2
5

. (2.22)

In a harmonic trap 2.1 the solution of equation 2.21 for the equilibrium density

becomes

n(r) = n(0)

(

1 −
∑

i

x2
i

r2i

)

(2.23)

with the central density n(0) = µ/g and the radii ri =
√

2µ/mω2
i . The GPE is valid at

low temperatures, for large numbers of particles and dilute systems where n |a|3 ≪ 1.

Because it is a mean field theory it can only describe the macroscopic behaviour of

the system over distances larger than the mean separation of the particles but good

agreement of the Thomas-Fermi approximation has been experimentally verified [40].
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Figure 2.2: The phase space density of 87Rb as a function of the density of particles

and thermal wavelength. The dashed lines correspond to a constant phase space

density. Bose Einstein condensation occurs above a phase space density of 2.6. The

red dot on the left would be the phase space density of rubidium vapour at room

temperature. The next red dot shows the phase space density in a MOT. The blue

dot on the right symbolises the phase space density of a BEC.



3 Interaction of light with

matter

The interaction of light with matter is the key to trap and cool neutral atoms [41, 42,

43]. Consider an atom with a transition between a ground state |g〉 and an excited

state |e〉 with an angular transition frequency ω0 and natural linewidth Γ. Further,

consider this atom in a laser field of angular frequency ωL. The two cases we will

discuss are an atom in a near resonant laser field and in a laser field far detuned with

respect to the atomic transition ω0. In the former case the detuning is on the order

of a few linewidhts |ωL − ω0| ∼ Γ and in the latter the detuning is on the order of

ωL/ω0 > 1. In the former case we will see that the cooling is based on the radiation

pressure [44, 45] of the light on the atom. In the second case the trapping is caused by

the interaction of the laser field and an induced dipole moment of the atom creating

a potential well for the atom.

3.1 Radiation pressure and Doppler cooling

With the excitation of an atom by the absorption of resonant light momentum is

transferred to the atom as well. A simple model to explain the effect of radiation

pressure is a two-level atom with a transition frequency ω0 between a ground and

excited state. Let us expose this system to a laser field of wavelength λ and angular

frequency ωL and let us consider the line width of the laser to be small compared to

all other frequencies in this problem. Let us further consider we can detune the laser

15
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from resonance by the amount ∆ = ωL − ω0, which will be negative in the following

discussion. For an atom moving with velocity v in the direction of a laser beam

the frequency of the laser is further shifted by the total amount 2πv/λ, because of

the Doppler effect, for a total detuning of ∆ − 2πv/λ. Excited atoms spontaneously

decay radiatively into the ground state at a rate Γ that causes no net momentum

transfer on the atom because that emission is isotropic. The photons of a laser

beam of wavelength λ carry a momentum of h/λ = h̄k. Thus, taking into account

the frequency dependence and saturation of the absorption I0
1,we can determine the

average force on a moving atom in a laser beam

F± = ±h̄k
Γ

2

I/I0
1 + I/I0 + [2(∆ ∓ kv)/Γ]2

. (3.1)

The upper sign refers to a laser beam propagating in the positive direction, where I is

the intensity and I0 the saturation intensity, the lower sign in the negative direction.

The force on an atom of two counter propagating beams is simply the sum of Ftot =

F− + F+. Hence we find

Ftot = h̄k
Γ

2

(
I/I0

1 + I/I0 + [2(∆ − kv)/Γ]2
− I/I0

1 + I/I0 + [2(∆ + kv)/Γ]2

)

. (3.2)

In figure 3.1 an example is shown for the forces F+, F− and the sum of both for a

detuning of ∆ = −Γ/2 with Γ, m and k for 87Rb. We simplify equation 3.1 by using

the approximation |kv| ≪ Γ and kv ≪ |∆| to

F = 4h̄k
I

I0

k(2∆/Γ)

[1 + (2∆/Γ)2]2
v (3.3)

and see that the force is frictional and linearly proportional and opposite to the

direction of the motion of the atom. This frictional force is compared to the viscous

force of a particle moving in a fluid, hence this cooling is called optical molasses.

The pre-factor of the velocity in equation 3.3 is the damping coefficient of this force

and we simply write F = −αv. At equilibrium the rate of cooling caused by the

1 the saturation intensity is defined as I0 = h̄ω/σΓ, where ω and Γ are the frequency and lifetime

of the transition and σ the resonant cross section.
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Figure 3.1: The total force Ftot, yellow, on an atom at velocity v of the two forces

F+, blue and F−, red, for a detuning of ∆ = −Γ/2 and a power of I/I0 = 0.1. The

shadow area emphasizes the capture range.

damping of the atom’s motion is the same as the heating caused by the random walk

in phase space caused by the spontaneous emission of photons described by a diffusion

constant D. Thus the temperature at equilibrium is given by the ratio of the diffusion

constant and the damping coefficient

kBTD =
D

α
=

h̄Γ

4

1 + (2∆/Γ)2

2 |∆| /Γ
, (3.4)

which has a minimum when ∆ = −Γ/2 which means

kBTmin = h̄Γ/2. (3.5)

Thus the minimum temperature is equal to 145 µK for 87Rb in the so called Doppler-

cooling limit. This one dimensional scheme can be generalised in three dimensions. In

a laboratory it is simply realised with three orthogonal pairs of counter propagating

laser beams of equal power and detuning. The force on the atoms due to radiation

pressure does not depend on the spatial position of the atoms which results in a

random walk in phase space. Therefore the atoms can not be trapped and cooled in

a small spatial volume. This cooling technique was proposed by Hänsch and Schalow

[46] and independently by Wineland and Dehmelt [47] in 1975. Combining the force
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of radiation pressure with an inhomogeneous magnetic field solves this problem as we

will discuss in the next section.

3.2 Principle of the magneto optical trap

To hold our atoms in a small volume we need a restoring force towards the center

of our trap. We will first discuss a simple 1D model of a magneto optical trap to

demonstrate the principle of a MOT and then discuss the more complicated scheme

of trapping and cooling of 87Rb in a MOT.

Let us now consider a two-level atom that has a total spin of F = 0 in the ground

state and F ′ = 1 in the excited state. The excited state is degenerate over the

m′
F = (0,±1) manifold. The degeneracy of this manifold is lifted in a magnetic field

because of the Zeeman effect. Let us consider a magnetic field with a linear gradient

B = ~∇Bz. At a position where B 6= 0 the sub-levels are shifted by the Zeeman effect

by ∆E = µB

h̄
gF ′mF ′∇Bz. Let the polarisation of the light be circular such that with

respect to the local magnetic field the beam propagating towards +z is σ+ polarised

and towards −z becomes σ− respectively (see figure 3.2). For a red detuned laser

atoms at z > 0 will absorb more σ− photons rather than σ+ photons so that a net

time-averaged force towards the origin of the trap is supplied to the atoms. On the

other side of the origin the absorption is reversed and the atoms absorb more σ+

photons rather than σ− photons and therefore are directed again towards z = 0. This

scheme can easily be generalised in three dimensions by using three pairs of counter

propagating laser beams of counter-wise polarisation in a spherical quadrupole field

B = B(−x/2,−y/2, z) as depicted in figure 3.3.

The D2 line of 87Rb at λ = 780nm corresponds to transitions of the single valence

electron from the 5S1/2 ground state into the excited state 5P3/2. This transition

is very suitable for cooling and trapping 87Rb in a magneto optical trap, because

commercial diode lasers are readily available at this wavelength. The ground state
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Figure 3.2: Atoms moving in the region where B > 0 are more likely to absorb

photons from the σ− beam and are excited into the state F ′ = |1,−1〉, because it

is closer to the resonance of the frequency of laser νL. The net momentum transfer

directs an atom towards the origin of the trap. The process reverses for an atom

entering the region where B < 0.

splits into two hyperfine (compare figure 4.11) states F = 1 and F = 2. The excited

state splits into four hyperfine states of F ′ = 0, F ′ = 1, F ′ = 2 and F ′ = 3. An atom

in the F ′ = 3 state can only decay into the F = 2 level in the ground state. Therefore

this closed transition is chosen for the cooling. Because of the finite line-width of a

laser atoms might accidentally be exited into the F ′ = 2 state from where they may

decay into the F = 1 hyperfine state of the ground state. In this state the atoms

are not resonant to cooling light and are lost, unless they are transferred back into

the cooling transition. Therefore another laser is used to excite atoms in the F = 1

ground state into the F ′ = 2 level of the excited state from where they decay back

into the F = 2 level of the ground state. The force on atom in one dimension in a
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Figure 3.3: At the centre between the two coils (red and green) of opposite magnetic

polarity a quadrupole field exists. The three pairs of counter propagating beams of

counter wise polarisation σ+ and σ− intersect at the centre and form the region where

the atoms are cooled and trapped.
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MOT is similar to the expression in equation 3.1 plus an additional term taking the

spatially dependent magnetic force F = µBdB/dz caused by the the gradient of the

magnetic field into account. Adding the forces repelling the atom in either direction

gives the total force on a moving atom in a MOT and it can be simplified to

FMOT = F+z + F−z = −αż −Kz (3.6)

with a spring constant K and damping constant α which we know to be the equation

of motion of a damped oscillator with mass m.

3.2.1 Beyond the Doppler limit

In the model of the Doppler-cooling limit that we discussed earlier (see section 3.1)

we can not explain the lowest temperatures that were observed in optical molasses

[48]. A more refined model of the cooling in an optical molasses was developed by J.

Dalibard and C. Cohen-Tannoudji taking the polarisation of the light and multilevel

structure of an real atom into account. The cooling mechanisms are described in

detail in [49] and here we only want to discuss the general idea and the result. We

focus on the scenario where the two counter propagating laser beams have opposite

circular polarisation and we call it the σ+−σ− laser configuration (see figure 3.4). Our

model system is a multi level system with two states F = 1 and F = 2 and in each

state Zeeman sub-states ranging from mF = −F, ..., 0, ..., F (compare figure 3.5). The

probability for an atom in the state mF = −1 to absorb a σ− photon propagating

towards z < 0 is higher than to absorb a σ+ photon propagating towards z > 0

and vice versus for an atom in the state mf = +1. The derivation of the following

argument is quite exhaustive and we refer the reader to the detailed discussion in [49].

Absorbing more photons from one of the beams than the other leads to an imbalance

of the radiation pressure and also a difference of the populations in the ground states.

To find the temperature at equilibrium we compare the diffusion constant and the

damping coefficient and find that the limit of the temperature in this model comes to



22 3 Interaction of light with matter

Figure 3.4: Two counter propagating lasers of opposite circular polarisation, σ+−σ−

configuration, interfere to produce a field with a rotating linear polarisation (dashed

arrows).

the recoil limit of one absorbed photon e.g. kBT = h̄2k2/2m with a theoretical limit

of 180nK for 87Rb.

3.2.2 Dynamics of the population in the MOT

Let us now consider a simple model to describe the growth and decay of the number

of atoms being trapped in a MOT. Let us assume that atoms below a critical velocity

are loaded into the MOT at a rate Φ. Further let us assume that atoms are lost

from the trap because of two-body collisions of trapped atoms at a rate β n2(~r, t)

and collisions with a remaining background gas of other species at a rate γ. The rate

equation for the number of atoms in the trap is given by [50, 51, 52, 53]

dN(t)

dt
= Φ − γN − β

∫

n2(~r, t)d3r (3.7)

where n(~r, t) is the density distribution of the trapped atoms. The number of atoms

in the trap is determined by the balance between the loading rate and the loss rate

of the trap. Therefore the number of atoms reaches a maximum, when the loading

rate equals the total rate of losses. At this point the number of atoms in the MOT
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Figure 3.5: Atomic level scheme for a F = 1 ↔ F = 2 transition. Along the

transitions indicated by the thin lines are the Clebsh-Gordon coefficients.

is constant in time and the density becomes time in dependent and is approximated

by n(~r, t) = ns(~r) in the radiation trapping limit [50, 54, 55] and equation 3.7 can be

written as
dN

dt
= Φ − (γ + β ns)N. (3.8)

The integration of equation 3.8 is not difficult and we find a simple expression for the

solution

N(t) = A(1 − e−Bt) = Nmax(1 − e−t/τ ) (3.9)

with A = Φ/(γ + β ns) and B = γ + β ns. If one assumes that the losses of atoms

from the MOT are dominated by collisions of the background of the same species,

e.g. β ns ≫ γ, we can estimate the loss rate and therefore find an expression for the

number of particles in the stationary limit. The loss rate can then be estimated by

[56] 1/τ = nσ(3kT/m)
1
2 , where σ is the collisional cross section between an atom of

the background gas to eject trapped atoms from the MOT and m the mass of the

atoms. For the maximum number of trapped particles, reached at γ = 0, we find

Nmax = Φ/(β ns) = Φτ . If no more atoms are loaded into the MOT, e.g. Φ = 0, the
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stationary MOT will decay exponentially as

n(t) = ns e
−t/τ (3.10)

where τ is a time constant given by loss mechanisms as discussed.
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Figure 3.6: The most probable velocity ṽ depends on the temperature T , see figure

3.6(a), and determines the expansion of the ensemble see 3.6(b).

3.2.3 Temperature of trapped atoms in a MOT

The velocity distribution of the thermal atoms trappen ina MOT obey the Maxwell-

Boltzmann distribution with the most probable speed ṽ =
√

2kBT/m, with the Boltz-

mann constant kB, the mass m of the atom and temperature T . About 60% of atoms

are within the range of zero velocity and the most probable velocity ṽ. The trapped

ensemble will expand when released from the trap proportional to the square root of

the temperature of the ensemble. To estimate the temperature one has to measure

the initial size of the density distribution and the size at different times after being

released from the trap. The density distribution is Gaussian n(z) = nsexp(−z2/σz),

where σz is defined as the 1/e radius along the z direction. During the expansion the

size will grow by ṽ∆t in a time interval ∆t. The size of the cloud of cold atoms as a

function of time is given by

σ(t) =
√

σ2
0 + (ṽ∆t)2. (3.11)

From fitting this equation to experimental data we can estimate the temperature of

the MOT. In a simple model where we are not taking polarisation effects into account
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we can derive a temperature limit in a MOT. The two counterparts in a MOT are the

spontaneous emission and stimulated absorption. For equal contributions in a low

saturation limit we find the so called Doppler limit which is given by T = h̄Γ/2/kB

which is 145µK for 87Rb. A typical density in a MOT is on the order of 1011cm−3

and assuming a temperature near the Doppler limit results in a phase space density

on the order of 10−5 still five orders of magnitude away from the onset of Bose-

Einsteincondensation.

3.3 The optical dipole force

In 1970 A. Ashkin successfully trapped micro-particles in a strongly focused laser

beam [57]. With this achievement the idea of trapping neutral atoms was born and

proposed by V.S. Letokhov [58] and A, Ashkin [59]. The trapping potential of an

optical dipole trap is conservative, as we will see later, and therefore the atoms are

not cooled in such a trap. By cooling atoms in a MOT or using molasses cooling one

can load cold atoms into an optical dipole trap [60] and [61]. Since then the dynamics

of the loading of optical dipole traps has been investigated in more detail[62, 63, 64].

Reaching high densities trapped atoms is the key to achieve quantum degeneracy

which was demonstrated by M.D.Barrett in 2001 [20].

In the following sections we will discuss the theoretical concepts of trapping neutral

atoms in an optical dipole trap. First we will look at a simple two-level systems which

we will later extend taking multiple levels into account and refine the model for 87Rb.

Later we will discuss the dynamics of trapped atoms in an optical dipole trap and

will focus on the trapping potential of a crossed optical dipole trap taking gravity

into account.



3.3 The optical dipole force 27

3.3.1 Oscillator model of a two-level system

Let us describe the light of a laser by an electric field of amplitude |Ẽ| by E(r, t) =

ẽẼexp(−iωt) + c.c., with the unit polarisation vector ẽ and frequency ω. The

time dependent electric field will induce an oscillating dipole moment p(r, t) =

ẽ p̃ exp(−iωt) + c.c. in an atom put into this field. The amplitude of the dipole

moment is given by the simple equation

p̃ = αẼ, (3.12)

where α denotes the complex polarisability, which is a function of the frequency ω of

the driving electric field. The induced dipole moment interacts with the driving field

and the potential of this interaction is given by

Udip = −1

2
〈p · E〉 = − 1

2ǫ0c
Re(α)I, (3.13)

where the angular brackets denote the time average over the rapid oscillating terms,

I = 2ǫ0c
∣
∣
∣Ẽ
∣
∣
∣

2

is the field intensity. The factor 1
2

takes into account that the dipole

moment is an induced rather than a permanent one. The resulting dipole force results

from the gradient of the interaction potential

Fdip(r) = −∇Udip(r) =
1

2ǫ0c
Re(α)∇I(r). (3.14)

The power absorbed by an atom in the driving field is given by

Pabs = 〈ṗ · E〉 = 2ωIm(p̃Ẽ) =
ω

ǫ0c
Im(α)I. (3.15)

Describing the driving electric field as a stream of photons with energy h̄ω, that are

absorbed and spontaneously remitted by the atoms the scattering rate is given by

Γsc(r) =
Pabs

h̄ω
=

1

h̄ǫ0c
Im(α)I(r). (3.16)

Solving these equations, considering the atom behaves like a classical oscillator (as

in Lorentz’s model) gives a simple and useful picture. In this picture the electron
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is bound elastically to the nucleus and oscillates with its eigenfrequency ω0. The

dipole radiation of the oscillating electron causes damping according to Larmor’s

well-known formula. This approach is valid for low saturation and low scattering

rates and provides a good approximation for the D lines of alkali metals [65]. With

these assumption we find following expressions for the dipole potential and scattering

rate

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)

I(r) (3.17)

Γsc(r) =
3πc2

2h̄ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r). (3.18)

Let ∆ = ω − ω0 be the detuning, then two essential points can be seen:

1. Sign of detuning: For a negative detuning or below an atomic resonance, the

interaction becomes attractive and the potential minima are found at positions

of maximum intensity.

2. Scaling with intensity and detuning: Usually optical dipole traps (ODT) operate

at high intensities and large detuning to minimise the scattering rate. The

potential scales as I/∆, whereas the scattering rate scales as I/∆2.

The further the detuning the lower the scattering rate, but the more power one has

to apply in order to provide sufficiently deep traps. A wide range of suitable lasers

are commercially available. For the author’s work a 20W fiber laser at a wavelength

of 1064nm was chosen. In the next sections we will focus on general considerations

and the design of an optical dipole trap.

3.3.2 Multi-level atoms

In the previous paragraph we introduced the concept of the optical dipole force using

a simple two level model of one ground and one excited state. For a multi-level atom



3.3 The optical dipole force 29

the general conclusion remains unchanged i.e. the sign of the detuning determines

the interaction and the scaling of the dipole force (scattering rate) as a function of

the intensity over the detuning. In a real atom the electronic transitions exhibit

a complex structure of many sub-levels. Instead of describing a multi-level system

with state dependent polarisabilities, we will use the picture of dressed atoms, which

was developed by Dalibard and Cohen-Tannoudji [66]. In a far-detuned laser field the

atomic levels are perturbed which can be treated by second order perturbation theory

of the laser field (linear terms of the field intensity). Thus we find from second-order

time-independent perturbation theory with an interaction Hamiltonian H1, that the

i-th state is shifted in its energy by

∆Ei =
∑

j 6=i

| 〈j |H1| i〉
Ei − Ej

(3.19)

if the states are non-degenerate. Similar to the two-level approach the interaction of

the atom with the laser field is described by the interaction Hamiltonian H1 = −µ̂E.

The description of the energy states Ei is the combined system of the energy of the

atom plus the total energy of the field. For an atom in its ground state the internal

energy is zero and the field of n photons has an energy of nh̄ω. Therefore we find the

total energy to be Ei = nh̄ω. By absorbing a photon from the field the atom transfers

energy to the excited state with an internal energy of h̄ω0 leaving the field energy to

be (n−1)h̄ω, thus the total energy is Ej = h̄ω0+(n−1)h̄ω = −h̄∆ij +nh̄ω. Applying

the previous results to a two level system yields the same result as we found before

in the semiclassical approach

∆E = ±|〈e|µ|g〉|
∆

|E|2 = ±3πc2

2ω3
0

Γ

∆
I. (3.20)

This optically induced shift, also known as the AC Stark shift, shifts the energy states

of the ground and excited states in opposite directions. The case of low saturation

is interesting, because the atom will stay in the ground state most of the time. In a

spatially inhomogeneous light field like given by a Gaussian laser beam the shift of the
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Figure 3.7: Shifts of the energy levels in a two-level system. On the left hand side,

red detuned light ∆ < 0 lowers the energy of the ground state and raises the energy

of the excited state. Right hand side, in a spatially inhomogeneous laser field the

atom will seek the lowest point of the potential i.e. the region of highest intensity an

can therefore be trapped.

energy depends on the position of the atom in the laser beam and therefore it ’sees’

a potential well. The case of a two-level system in a red detuned laser field is plotted

in figure 3.7 in which an atom in the ground state lowers its energy at the point

of the highest intensity of a spatially inhomogeneous laser. Knowing all electronic

states involved in a multi-level system one has to calculate all dipole matrix elements

µij = 〈ej|µ|gi〉. These elements can be written as the product of a reduced matrix

element ||µ|| and a real coefficient cij. The real coefficients describe the coupling

strength of the two states. The energy shift of the ground state |g〉 can be written as

∆E =
3πc2Γ

2ω3
0

I
∑

j

c2ij
∆ij

, (3.21)

where we carry out the summation over all the electronically excited states |eJ〉.

Dipole potential for Rubidium

Let us now have a closer look at 87Rb which we use in our experiment. The nuclear

spin of 87Rb is I = 3/2. The well known D line doublet is caused by the spin-
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orbit coupling and the two lines are related to the transitions from the ground state

2S1/2 to the two excited states 2P1/2 and 2S3/2 with an energy splitting h̄∆′
FS. The

hyperfine structure is caused by the coupling to the nucleus which leads to a splitting

of h̄∆HFS and h̄∆′
HFS for the ground and excited state. The relevance of these levels

is ∆′
FS ≫ ∆HFS ≫ ∆′

HFS. Starting from equation 3.21 we can derive a more general

result for the ground state for large detunings compared to the hyperfine splitting of

the excited states. The potential for an atom in the ground state of total angular

momentum F and magnetic quantum number mF in a laser field is given by

Udip(r) =
πc2Γ

2ω3
0

(
2 + PgFmF

∆2,F

+
1 −PgFmF

∆1,F

)

I(r), (3.22)

where gF is the Landé factor and P takes into account the polarisation of the light

(P = 0,±1 for linear and circular σ± polarised light respectively). Therefore the

terms in the brackets are the contributions of the D2 and D1 line with the detunings

∆2,F and ∆1,F with respect to the centre of each transition. Thus for 87Rb and linear

polarised light at a wavelength of λ = 1064nm we can write Udip(r) = U0 · I(r), where

U0 ∼ −1.826 · 10−36m2s

3.3.3 Neutral atoms in a focused Gaussian beam

So far in our discussion we hace not considered any further constraints on the intensity.

A focused laser beam with a Gaussian spatial intensity distribution (see figure 3.8(a)

and 3.8(b)) with power P propagating along the z-axis is given by

I(r, z) =
2P

πw2(z)
exp

(

−2
r2

w2(z)

)

(3.23)

with radial coordinate r. The radius of the beam w is defined along the radial

direction, where the intensity has decreased to 1/e2 and varies along the axial direction

z (see figure 3.8(b)) according to

w(z) = w0

√

1 +

(
z

zR

)2

(3.24)
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Figure 3.8: Beam profile of a focused Gaussian laser beam. The smallest radius w0

is at the focus of the beam. At the distance of the Rayleigh length zR the area of the

beam is twice as big as in the focus.

where zR = πw2
0λ denotes the Rayleigh length and w0 the smallest waist of the beam

at the focus of the beam. It is also the place, where we define the depth of the trap

U0 = U(r = 0, z = 0). The dipole potential of neutral atoms in a focused Gaussian

laser beam is well approximated with a Taylor series if the kinetic energy kBT of the

atomic ensemble is much smaller than the depth of the trap. Truncating the series

for higher orders than two, yields the harmonic approximation and we find for the

optical dipole potential the simple expression

U(r, z) = −U0

(

1 − 2

(
r

w0

)2

−
(

z

zR

)2
)

. (3.25)

At the bottom of the trap the atoms oscillate with frequencies

ωr =

√

4U0

mw2
0

(3.26)

ωz =

√

2U0

mz2R
(3.27)
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along the radial and axial directions, where m is the mass of the atom. The geometry

of the trap is determined by the aspect ratio which can easily be found by taking the

ratio of the radial over the axial frequencies

ωr

ωz
=

√
2
zR
w0

=
√

2
πw0

λ
. (3.28)

Therefore the confinement in a single beam is stronger along the radial direction and

weaker along the axial direction.

For convenience energies are often converted into a temperature equivalent by simply

dividing the energy of the potential U0 by the Boltzmann constant kB. The useful

picture we can derive from this is that atoms which are hotter than the depth of the

trap can not be trapped. The dipole potential for 87Rb in a focused Gaussian laser

beam is shown in figure 3.9. The solid red line shows the 1/e2 beam profile along

the axis of propagation (z-direction). The dashed lines show equipotential lines of

the trap in units of T = U0/kB. Note the difference of the dimensions of a factor

100 on the radial and axial directions (r and z -directions). This is a consequence

of the ratio of the two trapping frequencies which we found in equation 3.28 to be
√

2 zR
w0

=
√

2πw0

λ
= 112.7 for a waist of 27µm we used for the calculation in figure 3.9.

The depth of the trap, and therefore the scattering rate, scales linearly in power but

with the inverse square root of the waist (compare equation 3.25). As we can see in

figure 3.10 a deeper trap is found for a smaller waist but also a higher scattering rate.

On the other hand a larger waist at the same power means a lower scattering rate

but also a shallower potential. Regardless, the scattering rate is on the order of a

few Hz at high powers and is not of concern and can be neglected for far red detuned

traps. Other loss mechanisms (as we will see in chapter 6) happen at a faster rate and

the power is reduced from tens of W to a few mW in a few seconds. The radial and

axial trapping frequencies are shown in figure 3.11 at the centre of the trap. Again

we emphasize the difference of a factor of 112.7 between the frequencies in the two

directions.
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Figure 3.9: Beam profile of a focused Gaussian laser beam wavelength 1064nm and

w0 = 27µm (red lines). The dashed lines are equipotential lines of the potential

energy of the optical dipole trap for 87Rb at a power of P = 10W in units of a

temperature equivalent to E/kB = T (µK).
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(a) Trap depth U0(P,w) as a function of the

waist w0 and power P .

(b) Scattering rate Γsc(P,w) as a function of

the waist w0 and power P .

Figure 3.10: On the left hand side the depth of the trap as a function of the power

and waist of the laser beam. On the right hand side the scattering rate as a function

of power and waist of the laser beam.

(a) The radial trap frequency as a function of

the waist w0 and power P .

(b) The axial frequency as a function of the

waist w0 and power P .

Figure 3.11: The radial and axial trapping frequencies as a function of the power and

the waist in a single beam trap.
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3.3.4 Crossed dipole trap

Thermalisation of the trapped atoms is governed by the two body-collision rate which

depends on the geometry of the trap. The weak confinement in a single beam trap

along the axial direction dilutes the density of the atoms at the centre of the trap and

reduces therefore the two-body collision rate. By overlapping two optical dipole traps

the weak direction is combined with the strong direction of the other. The confinement

is therefore stronger in each direction. In order to avoid interference between two

beams of the same wavelength one has to make sure that their polarisations are

orthogonal. The intensities of two beams of the same wavelength propagating along

the x-direction and y-direction with different powers and waists are:

I(x, y, z) =
2Px

πw(x)2
exp

(

−2
y2 + z2

w(x)2

)

+
2Py

πw(y)2
exp

(

−2
x2 + z2

w(y)2

)

. (3.29)

The trapping frequencies in each direction in such a trap are then given by

ωx =

√

−8U0

πm

(
Py

w4
0,y

+
Px

2w2
0,xx

2
R

)

(3.30)

ωy =

√

−8U0

πm

(
Px

w4
0,x

+
Py

2w2
0,yy

2
R

)

(3.31)

ωz =

√

−8U0

πm

(
Py

w4
0,y

+
Px

w4
0,x

)

. (3.32)

These equations give the same result as the equations 3.27 and 3.26 of a single beam

trap if we consider the power of one beam to be zero. The second terms in ωx and

ωy depend on the Rayleigh length and are only important at lower powers.

3.3.5 Gravity

The acceleration of g = 9.81m/s2 caused by gravity causes an additonal linear po-

tential along the direction of gravity, which can be neglected for deep traps such

U0(z) ≫ mgz. For shallower traps the geometry becomes more anharmonic and for

too little power we can not trap atoms against gravity in our trap. In figure 3.12 the
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(a) Optical dipole potential without gravity,

see equation 3.25.

(b) Optical dipole potential with gravity, see

equation 3.33.

Figure 3.12: The optical dipole potential at low power not taking into account the

influence of gravity (figure:3.12(a)) and for same beam parameters taking gravity

into account (figure:3.12(b)). The dashed line in both plots shows the harmonic

approximation.

potential produced by the optical dipole force is shown for one and the same beam

parameters (power, waist and wavelength). The left hand figure 3.12(a) shows the

potential neglecting gravity, whereas the right hand figure 3.12(b) shows the com-

bined potential. Quite remarkable is the anharmocity of the potential as well as the

fact that the effective trap depth is not anymore given by the difference from U = 0

to U(0) = U0 or the constant term in the series approximation. The effective depth

of the trap is given by the potential minimum which is slightly shifted from the origin

and the local maximum (shaded area in figure 3.12(b))

Uz = mgz + U0I(0, 0, z) (3.33)

3.3.6 Parametric heating

As we will see in Chapter 4 (see section 4.7) the power and the waist diameter are

quite important parameters as they are used to determine the temperature and phase
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space density. The equations 3.26 and 3.27 allow us to determine the frequencies

for a given power and waist. With the technique of parametric heating [67, 68] one

modulates periodically the power of the trapping beam varying the frequency of the

modulation. Due to the energy transfer the atoms are heated and the loss of atoms

from the trap is resonantly enhanced at harmonics ωn = 2ωr/n (n integer) of the

unperturbed trapping frequency ωr. By identifying these resonances and rearranging

(3.27) and (3.26) one can determine the waist and Rayleigh length of the trapping

beam. The equation of motion for a parametrically driven oscillator with damping is

given by

ẍ + β(t)ẋ + ω(t)2x = 0 (3.34)

with the damping coefficient β(t) and frequency ω(t). Periodic modulation of the

eigenfrequency ω2(t) = ω2
0 [1 + a0 sin(ωmt)], with amplitude a0 and frequency ωm

of the modulation, causes an exponential increase of the energy of the oscillator for

driving frequencies near 2ω0 and other subharmonics at 2ω0/n. Near the resonance

the profile is well described by a Lorentz profile:

f(ν) =
1

π

Γ

Γ2 + (ω − ω0)2
(3.35)

with the position of the resonance at ν0 and a line width of the resonance Γ. We

can use this technique in a single beam as well in a crossed optical dipole trap to

determine the waists (e.g. the geometry) at the centre of the trap.

3.3.7 Growth and decay of the number of atoms in a ODT

Collisions among the atoms determine the lifetime of the trap which we define as

the time taken to reach the 1/e level of our initial number of atoms in the trap.

One loss mechanism is collisions of a trapped atom with highly energetic atoms from

the background gas where we lose one trapped atom. Collisions among two atoms

-two body collisions- redistributes the energy and converts the internal energy into

kinetic energy and loss of an atom may occur after the collision. At higher densities
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the collision of the atoms -three body loss- has to be taken into account. Three

colliding atoms may form a molecule and transfer the binding energy onto the third

atom and both molecule and atom are lost from the trap. The photon scattering is

not mentioned here, as it is much smaller than all other loss mechanisms. All three

mechanisms are described by the following differential equation [62]:

dN

dt
= −ΓN − βN2 − γN3 (3.36)

where Γ, β and γ are the coefficients for

Γ collisions with highly energetic atoms from the background gas

β collisions among two trapped atoms

γ three trapped colliding atoms.

In the limit of low densities (n < 1012cm−3) we take only the one body and two body

mechanisms into account and a solution of equation (3.36) is given by

N(t) = N0
e−Γt

1 +
(
βN0

Γ

)
(1 − e−Γt)

. (3.37)

Typical decays of the population in an optical dipole trap is shown in figure 6.8 at

different stages of the evaporation.

3.3.8 Potential of a crossed ODT taking gravity into account

In this section we want to discuss the potential of a crossed dipole trap crossing at

a slight angle, their foci not intersecting at the same point and taking gravity into

account. We assume one beam propagating along the x-direction and a second beam

along the y-direction under a slight angle β and gravity along the z-direction. The

first beam is given by

U(x, y, z) = U0

2P1 exp

(

− 2((x−x0)2+z2)

w2
1

(

1+
(x−x0)

2

xR

)

)

w2
1

(

1 + (x−x0)2

xR

) (3.38)
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where y and z are the transverse directions of the beam and x0 an offset to the spatial

position of the waist. The second beam is rotated under a slight angle Θ and with

the new coordinates

x‘ = x cos(β) (3.39)

y′ = y sin(β) (3.40)

the second beam is given by

U(x, y, z) = U0

2P2 exp



−2(((x−x0) cos(β)−(y−y0) sin(β))2+z2)

w2
2

(

((y−y0) cos(β)−(x−x0) sin(β))2

y2
R

+1

)





πw2
2

(
((y−y0) cos(β)−(x−x0) sin(β))2

y2R
+ 1
) (3.41)

where x and z are the transverse directions of the beam and (x0, y0) an offset to the

spatial position of the waist. The spatial geometry of the beams is show in figure 3.13

which is the given geometry in our experiment (see figure 3.14). The beams intersect

under a slight angle due room constraints in our set up. The combined potential is

given by:

U(x, y, z) = (3.42)

U0











2P1 exp

(

− 2((x−x0)2+z2)

w2
1

(

1+
(x−x0)

2

xR

)

)

w2
1

(

1 + (x−x0)2

xR

) +

2P2 exp



−2(((x−x0) cos(Θ)−(y−y0) sin(Θ))2+z2)

w2
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
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



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For this spatial geometry we can calculate the optical dipole potential taking gravity

into account. In figure 3.15 we show the potential with following parameters for

O1:(P1 = 0.03W,w0 = 27µm, λ = 1064nm) and O2(P1 = 0.03W,w0 = 30µm, λ =

1064nm) an angle of 76◦ and a displacement of the focus of O1 of xoff −0.2zR1. Again

we estimate the trapping frequencies according to the harmonic approximation which



3.3 The optical dipole force 41

Figure 3.13: Two traps are propagating

along the blue and pink lines which show

the 1/e2 radii of two focused laser beams

in the x-y plane perpendicular to gravity.

The angle between the propagation axes

is 76◦ and the focus of O1 is offset by 2zR

with respect to the intersection point of the

two traps.

Α~76°ODT I

ODT II

Figure 3.14: Absorption image of the

crossed traps in our experiment. The two

traps intersect at an angle of α ∼ 76◦. The

focus of the trap propagating from the left

to the right in the image is displaced by

∼ 2zR = 5mm.
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Figure 3.15: Equipotential lines

in the x − y|z=0 plane at z=0 of

a crossed trap under an angle of

76◦. The equipotential lines are

in units of E/kB = T (µK). The

trapping region in x and y direc-

tion is just a few ten µm across

and the focus of the trap propa-

gating in x direction is 0.2zR ∼
0.5mm away.
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Figure 3.16: The trapping frequencies along the directions of the Cartesian system.

In each plot the blue line shows the actual potential whereas the purple one the

potential found by the harmonic approximation. Labels are the trap frequencies in

each direction.
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Figure 3.17: Equipotential surfaces for −6,−5,−4.15, 3.8µK

is visualised in figure 3.16. The geometry of the potential can be shown for a surface

of constant energy (see figure 3.17) and we see that above a certain energy the trap

“opens up” and atoms can leak out of the trap. In figure 3.18 slices through the

centre of the trap are shown for a line of constant energy. The challenge therefore is

to have a trap that is deep enough to still trap atoms versus gravity but not to have to

evaporate further e.g. lowering the intensity further to achieve quantum degeneracy.
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Figure 3.18: Similar to figure 3.17 the cross sections through the trap in the planes

y-z,x-y and x-z from left to right.
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In this chapter we have a look at all the different components that are used in this

experiment to achieve Bose-Einstein condensation in an all-optical trap. The general

idea to reach quantum degeneracy is to load a magneto-optical trap (MOT) using near

resonant light, transfer the atoms into a optical dipole trap (ODT) of a far resonant

laser and evaporatively cool the atoms by lowering the power. BECs formed in a ODT

are called ’all-optical’ BECs as the trapping potential is provided by the laser field

only. The onset of Bose-Einstein condensation is typically observed at temperatures

on the order of a few hundred nano-Kelvin. In our experiment we use the absorption

imaging technique for detection and further analysis.

4.1 Ultra high vacuum system

Three counter propagating pairs of laser beams are needed for a MOT. Preferably

the optical access for the dipole trap, ring trap and imaging is not used along one of

the MOT beams as well. To keep the current as low as possible and to reduce the

inductance the coils should be as small and as close to the atomic sample as possible.

Furthermore, the inner surface of the set up should be as small as possible to reach and

maintain an ultra high vacuum. These constraints are satisfied using a commercial

vacuum chamber from Kimball Physics. It has eight equidistant 23
4

′′
ports on a ring

and two 6′′ ports on the faces of the ring as can be seen in figure 4.1. The design of

the set up was developed in SolidWorks,(see figure 4.1). A pressure gauge is mounted

on the far left mainly to monitor the pressure for detection of coarse leaks, during

45
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Figure 4.1: The vacuum part of the experiment (a) chamber, (b) valve, (c) pressure

gauge, (d) and (e) Varian ion pumps, (f) feedthrough connecting the dispenser.

.

Figure 4.2: During the bake

out the pressure in the chamber

was continuously monitored on a

pressure gauge. Turning on and

off the ion getter pumps during

that time caused some pollution

as is clear from the spikes in the

pressure.
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the baking. Two ion pumps (Varian) are mounted on the right to keep the pressure

in the low range of 10−10mbar. This pressure is required to keep the scattering rate

with the remaining background gas low for trapped atoms. In order to achieve a

clean ultra high vacuum the set up was baked out over 4 weeks at a temperature of

150◦C. The set up was wrapped with Aluminium foil and heated up with flexible band

heaters. The temperature was measured at various points of the set up and slowly

increased in order to avoid thermal stress on components. The valve was left open

and connected to a turbo pump to pump away atmospheric gases and to reach low

pressures. During that time the remaining background gas was analysed with a mass

spectrometer. The valve was closed when the fraction of hydrogen of the remaining

background gas was dominant. After slowly decreasing the temperature the pressure

gauge was reading pressures as low as 10−10 mbar, at the limit of its sensitivity. The

pressure during the bake out is shown in figure 4.2. In order to remove contaminants

from the ion pumps we turned the ion pumps on for brief times. These short bursts

of contaminants being emitted into the chamber can be clearly seen in figure 4.2 by

the sharp rises of the pressure. With each repeat the amount of contaminants being

emitted became smaller as we see from the decaying height of the pressure burst in

figure 4.2 each time the ion pumps where turned on for a short time.

4.2 Experiment control

One of the technical challenges for experiments in atom-optics is the accurate timing

and control of the experiment on long and short time scales. At the beginning of

each run of an experiment it takes typically several seconds to load a MOT and to

form a BEC. On the other hand actual experiments and the final imaging only take

ms or even µs. We use digital channels to switch shutters, to turn on and off AOMs

and to trigger a camera. Analog channels are used to adjust frequencies of VCOs

and to control power levels.Typically experiments in atom optics follow a step by
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Figure 4.3: Schematic flow chart of the experiment control. Details are described in

the text.
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step routine of different time scales in each step and various parameters changing

from step to step. A user friendly interface to control an experiment was developed

by Aviv Keshet at the MIT in W. Ketterle’s group. The software contains Cicero

Word Generator (see figure 4.4) and Atticus Hardware Server. It gives the user the

ability to control sequences of 60s duration with a time resolution of 1-2µs. This

software runs on a PC and is connected to a stand-alone PC with a master clock in

order to synchronise the analogue and digital channels. The stand alone unit delivers

digital inputs and analogue levels to National Instruments (NI) instrument cards and

RS232 commands via two serial channels. A schematic overview of the experiment

control system is given in figure 4.2. The analogue channels are used to adjust the

frequencies for the AOMs for the laser frequency control, MOT detuning and imaging

(see section 4.3 for further details) and to control the power levels of the repumper

and the power level of the laser beam for the optical dipole trap (see section 4.5 for

further details). The digital channels are used to trigger shutters to extinguish light

in several beam paths, to trigger switches in order to turn on or off AOMs (see section

4.3) and to select different configurations of magnetic fields. The options of different

configurations of magnetic fields are discussed in more detail in section 4.4.1. The

details for the control of the imaging are described in section 4.6

4.3 Laser system-MOT

The continuous absorption and spontaneous emission of photons driving the |2, X〉 →
|3, X〉 transition cools the 87Rb atoms (see figure 4.5). However, some atoms decay

into the F=1 state and would be lost if they are not transferred back into the cooling

transition. Therefore the repumper excites the atoms into the F ′ = 2 state from where

they either decay back into the F = 1 state or into the F = 2, where they get back

into the cooling transition. Figure 4.6 is a simple schematic of the laser system for the

MOT and detection systems. It consists of two commercial diode lasers (Toptica, TA
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Figure 4.4: Screenshot of the Cicero word manager being used for the sequence control. The Cicero word manager shows

an overview of the values of the analog and digital channels during a timeslot
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Repump

5S1�2

Cooling

5P3�2

F=1

F’=1

F=2

F’=2

F’=0

F’=3

Figure 4.5: The relevant transitions

for the cooling of 87Rb in a MOT.

Figure 4.6: A simple schematic of the MOT and detection laser system.
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Figure 4.7: In the simplified sketch of a pump and probe set up, a linearly polarised

beam passes through a polarising beam splitter and through a glass cell that contains

a dilute gas of Rubidium. The λ/4 wave plate rotates the polarisation of the reflected

probe beam such that the polarisation of the pump and probe are orthogonal. The

absorption is monitored on a photo detector.

Pro and DL100) to drive the cycling transition for cooling and repumping 87Rb shown

in figure 4.5. The F = 1 and F = 2 states are separated by 6.8 GHz (see figure 4.11)

so it is from a technical point of view easier to set up another Doppler-free saturated

absorption spectroscopy unit instead of using a frequency offset lock which requires

an accurate frequency source. A probe beam of each laser, (seefigure 4.6) is used to

stabilise the frequency using standard Doppler-free saturation spectroscopy. Doppler-

free saturation spectroscopy is a technique to selectively detect atomic transitions of

those atoms which belong to the class of velocity v = 0 parallel to the propagating

beam. To detect the atomic transitions we excite the atomic sample with a pump

beam and monitor the transmittance with a probe beam on a photodetector (see figure

4.7). Let us assume our pump beam has a frequency ωL which is slightly lower than

an atomic transition ω0. The condition to absorb resonant photons is ωL = ω0 − kv
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Figure 4.8: The upper

states |a〉 and |b〉 with

common ground state |g〉.
The splitting ∆ω of the two

upper states is smaller than

the Doppler-width ωD

and depends on the direction of the propagation of the beam and the motion of the

atom. Therefore only atoms with a velocity −v absorb photons from this beam and

a reflected beam will only be absorbed by atoms of velocity +v. For ωL = ω0 only

atoms of velocity v = 0 absorb photons and the absorption of the probe beam is

lower. Yet, in a multi-level system we see the effect of cross over resonances, if two

(or more) levels are separated by a frequency smaller than the Doppler-width (see

figure 4.8). Consider the frequency ω = ωa+ωb

2
where the pump beam excites atoms

of velocity −v into the state |a〉 and the probe beam excites atoms at velocity +v

into the state |b〉. We then have ωa− kv = ωb + kv or kv = −ωb+ωa

2
. The probe beam

depletes the population of the common ground state and the sample becomes more

transparent for the probe beam. Of course the signals from cross-over resonances

increase the number of observed lines in a spectrum but they are actually very useful

for controlling and adjusting frequencies for various applications in our experiment.

The states F ′ = 2 and F ′ = 3 of 87Rb are separated by 266.7 MHz with the common

ground state F = 2 and therefore we see a cross-over resonance 110 MHz below the

transition from F = 2 → F ′ = 3.

In order to tune the frequency of the light for the MOT independently of other

applications and alignment we use an AOM in a double-pass configuration (see figure

4.10). The advantage of a double-pass configuration is that the retro reflected beam,

which is shifted twice in its frequency, is collinear with the incident beam. If one

wishes to tune the frequency of that laser during an experiment, no further alignment
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Figure 4.9: Occurrence of crossover

resonances in a system of one ground

state |g〉 and two excited states |a〉
and |b〉. Lines of positive slope be-

long to the pump beam and lines of

a negative slope belong to the probe

beam. A signal occurs where pump

and probe beam intersect. The cross-

over resonance occurs if pump and

probe excite different states.

Ωlaser

vatoms

Ωlaser

Èg\®Èa\ Èg\®Èb\

Èg\®Èa\ Èg\®Èb\

Ωa,bΩa Ωb

Intensity

Figure 4.10: Tuning of the fre-

quency using using a double pass

configuration. An incident beam

is deflected by an AOM and

shifted in its frequency by an

amount of ν. The deflected part

of the back reflected beam is

shifted twice in its frequency. In

brackets are the orders of deflec-

tion (1st, 2nd).
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1®1’, 2’
+80MHz

2®2’, 3’

-2Ν1

+Ν2

5S1�2

5P3�2

F=1

F’=1

F=2

F’=2

F’=0

F’=3

Figure 4.11: The cooling laser is

locked to the F = 2 → F ′ = 2, 3

cross over resonance and is blue de-

tuned with respect to the F = 2 →
F ′ = 3 with a double pass AOM con-

figuration. With another AOM the

frequency of the light is red detuned

by a few MHz below the F = 2 →
F ′ = 3 transition.

is required. In our experiment we shift the frequency twice with the negative first

order such that the total frequency shift is 2νAOM1. The frequency to run the MOT is

adjusted with another AOM at frequency νAOM2 such the total detuning of the MOT

laser beam becomes ∆ν = νAOM2 − 2 νAOM1. The frequency of one laser (TA pro) is

blue detuned with respect to the |2, X〉 → |3, X〉 transition of 87Rb (see figure 4.12(a))

and is adjusted with AOMs to the desired frequency for cooling and detection of 87Rb.

Another laser (DL 1100 is locked to the F = 1 → F ′ = 1, 2 crossover resonance (see

figure 4.12(b)) and shifted on to resonance of the |1, X〉 → |2, X〉 repumping transition

with an AOM. Figure 4.11 shows the locking as described above.

4.4 Coil design

Magnetic fields are an important tool to manipulate atoms and require accurate con-

trol. A magnetic quadrupole field is required for loading the MOT, weak homogeneous
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(a) The left feature shows cross over resonances of

transitions of 87Rb from F = 2 → F ′ = 2, 3.

The weakest peak is the F = 2 → F ′ = 3

transition. The strongest peak is given by the

crossover resonance from F = 2 → F ′ = 2, 3.
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(b) Crossover resonances of transitions from F =

1 → F ′ = 0, 1, 2 To lock a laser the cross over

resonance F = 1 → F ′ = 1, 2 is used and

with an AOM the frequency is adjusted to the

F = 1 → F ′ = 2 transition. transition.

Figure 4.12: For cooling and trapping 87Rb in a MOT the transition from F = 2 →
F ′ = 3 is used for cooling, whereas the transition F = 1 → F ′ = 2 is used to pump

the atoms back into the cooling cycle. The transitions and locking points are shown

in figure 4.11. Absorption spectra of the cooling and repump transition are shown in

figure 4.12(a) and 4.12(b)
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fields are needed to supply a quantisation axis and high homogeneous fields are re-

quired to tune atom interactions with Feshbach resonances. The former is simply

realised with any pair of coils with currents flowing in opposite directions, whereas

for the latter the best realisation is given for two coils separated by a distance equal

to their radius, also known as the Helmholtz condition. Both kinds of fields can be

supplied by the same pair of coils. The constraints are: 1. size of the windows of

the chamber (R=8 cm), 2. diameter of the wire (ø=3.25 mm), 3. desired maximum

field strength (B=1200 G at (160 A,40 V)), 4. homogeneity of the field in the center

(∆B
∆z

= min). In cylindrical coordinates the axial and transverse field components for

a single current loop of radius R perpendicular to the z axis and placed at z=A are

given by:

Bz =
Iµ0

2π
√

(r + R)2 + (z − A)2
(4.1a)

×
(

(−r2 + R2 − (z − A)2)E(k)

(R − r)2 + (z − A)2
+ K (k)

)

Br =
µ0I(z − A)

2πr
√

(r + R)2 + (z − A)2
(4.1b)

×
(

(r2 + R2 + (z − A)2)E(k)

(R − r)2 + (z − A)2
−K (k)

)

with

k =
4rR

(r + R)2 + (z − A)2
, (4.1c)

where E(k) and K(k) denote the complete elliptical integrals [69]. With these param-

eters it was found from calculations (using Mathematica) that coils with 12 layers of

7 turns at a distance of 8.8 cm, in contrast to 8 cm given by the Helmholtz condition,

comply best with the requirements mentioned above. Strictly the Helmholtz condi-

tion applies to a set of two coils of zero wire radius. Here we took the finite size of the

wire into account and the winding of the coils which explains the discrepancy of dis-

tance of the two coils comparing the ideal and the real arrangement of the coils. The

linearity of the quadrupole field as a function of the current and spatial position, and
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Figure 4.13: The lines show calcu-

lations (see equations 4.1) of the

strength of total magnetic field in

the anti-Helmholtz configuration be-

tween the coils for I = 2, 4, 6, 8A.

Between the coils the field changes

linearly as shown with the dashed

lines.
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calculated measured

resistance [Ω] 0.24 0.26

inductance [mH] 1.748 1.72±0.03

gradient [G/cm] (for I=8A) 7.44 7.64±0.02

magnetic flux at centre [G](for I=8A) 55.95 55.75±0.1

Table 4.1: Summary of calculated and measured characteristics of the Helmholtz pair.

All magnetic fields were measured with a GM04 Gaussmeter.

also the homogeneity of the field are depicted in figure 4.14, taken with a Hall-probe

(Hirst Magnetic Instruments (GM04)). The accuracy of the probe is better than 1%

at 20◦C, and the results show a good agreement with the calculations tabulated in

table 4.1. The Helmholtz field varies less than one percent over a range of 2.5cm

along the field direction. The size of the BEC can be expected to be about 100 µm.

Over this region the spatial variation of the magentic field vaires by a few parts per

million for a constant current. This is sufficient to manipulate the interaction close

to Feshbach resonances which typically are a few mG wide.
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(a) Each coils is made of

7*12 windings of a

copper wire of a diam-

eter of 3.25mm.

(b) Magnetic flux B as a function of position

(dots) at a constant current of I=8A. The

slope of the linear fit is 7.64± 0.02G/cm.

(c) Currents flowing through both coils in the

same direction results in a homogeneous

magnetic field. The strength of the field

changes linearly with the strength of the

current. Magnetic flux B (dots) as a func-

tion of current I at the center of the field,

B = B(I)|x=0. The line shows a linear fit.

(d) Homogeneity of the Helmholtz field at the

center, B = B(x)|I=const.

Figure 4.14: Production of the magnetic field and its calibration. The current flows

through the coils 4.14(a) in anti-Helmholtz 4.14(c) or in Helmholtz 4.14(b) and 4.14(d)

configuration and forms an inhomogeneous or a homogeneous magnetic field.
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TTL 1 TTL 2 TTL 3 configuration

I. 0 0 0 OFF

II. 1 0 0 Helmholtz

III. 0 1 0 Anti-Helmholtz

IV. 0 0 1 +Coil 2

V. 1 1 0 + Coil 1

VI. 1 0 1 - Coil 2

VII. 0 1 1 n/a

VIII. 1 1 1 n/a

Table 4.2: The eight combinations of the three TTL inputs set the desired configu-

ration. Configuration I. is needed to load the MOT and configuration II. to apply a

weak homogeneous magnetic field to provide a quantisation axis. The configurations

IV., V. and VI. are useful to supply an inhomogeneous magnetic field in order to

spatially separate spin mixtures.

4.4.1 Coil control

For experiments with BECs, magnetic fields of different strengths and directions

are required, and to apply homogeneous and inhomogeneous fields one has to be

able to control the direction of the current in the coils. The technical challenge of

such a device is to be able to switch high currents as quickly as possible. Different

configurations are chosen by turning on and off MOSFETS (see figure 4.15) to conduct

the current along different paths. These configurations are turned on and off via

TTL signals from the computer. Three inputs set different settings and the truth

table 4.2 shows the available configurations. The response of switching on and off

the coils in anti-Helmholtz configuration is shown in figure 4.16 for different currents.

While switching the anti-Helmholtz configuration on, the second input of the current

switcher is set high. The decay of the current is determined by the inductance of the
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Figure 4.15: Circuit diagram of the current switcher.

Helmholtz mode: the gates of U1, U6, U7 are on to allow the current to flow in

the same direction through the coils 1 and coil 2.

Anti-Helmholtz mode: the gates of U1, U5, U6 are switched on to allow the

current to flow through coil 1 and in opposite direction through coil 2.

Single coil modes : the current is flowing only through coil 1 if U1 is switched on

and the current is bypassed through U5 and U7 or U4 and U6. A change of direction

through coil 1 is not possible. A combination of U2, U5, and U6 will allow the current

to flow in one direction or in another if U2,U4, and U7 are switched on through coil

2.
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(a) Switching off the coils at current of

11A

(b) Exponential fit to deacy of the cur-

rent from 11A

(c) Time constants of the decay for dif-

ferent initial currents

(d) Switching off the coils at current of

11A with a 10ms pretrigger

Figure 4.16: The decay time (1/e) of the current is 3ms for a current of 11A and

decreases for lower currents. Setting a pretrigger in the sequence turns the current of

earlier to ensure that the current is off at the end of the desired time slot.

coils and the voltage drop across the MOSFETs. The time constant of the decay of a

initial current is 3ms, which is too long. In order to cool the atoms below the Doppler

limit during an optical molasses no residual fields should be present. This also limits

the feasibility of a compressed MOT where in order to increase the density of the

atoms the magnetic gradient is increased in a short time on the order of 10ms before

the current is turned off for the molasses cooling. It turned out that the current

supply we used first was not able to ramp currents up or down in a sufficiently short

time. We overcame this problem with another power supply from Delta Elektra the
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Figure 4.17: Calibration of the output current as a function of the supplied voltage

of the analogue channel. The dots show the data points and the line a linear fit. The

function of the fit is I(U)=20.86A/V·U-0.6A

output, of which can be remotely controlled via analogue channels (see figure 4.17).

Leaving the switch constantly in the Anti-Helmholtz mode shortens the switching

time. Still the problems remained that the time for the current to decay was too

long.

4.4.2 A faster switch for the current

In order to achieve a faster decay of the current we replaced the previous circuit with

a circuit of four parallel insulated gate bipolar transistors (IGBTs) which are clamped

by Zener diodes to a voltage of 390V. The decay of the current from 10A to 0A was
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Figure 4.18: Schematic of the power control of the laser for the optical dipole trap.

faster than 50µs, measured by induced current within a current clamp () which is not

permanently in the set up and therefore has no effect on the experiment.

4.5 Laser system-optical dipole trap

For the optical dipole trap an infra red fiber laser from IPG (YLM-29) is used, operat-

ing at a wavelength of λL = 1064nm. The output of the laser is linearly polarised and

has a maximum power of 20W. The loading dynamics of our ODT will be discussed

in chapter 6 and here we only want to describe how we control the power in the laser

beams of a crossed trap. Figure 4.18 shows a schematic diagram of the setup for the

optical dipole trap. The beam exiting from the head of the fibre laser passes first

through a combination of a telescope (magnification=1/3) a half-wave plate (HWP)

and a polarising beam splitter to adjust the power in two paths and to match the aper-

ture of the AOMs for optimal operation. After deflection by the AOMs both beams

pass through another telescope (magnification=3) to size each beam to its original
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diameter (D=5mm) before they are focused via a lens of focal length f=200mm into

to the science chamber. We can estimate the waist of a focused Gaussian laser beam

at the focus using the equation w0 = (2λ/π)(f/D). Therefore we expect a waist

of w0 ∼ 27.1µm. In order to avoid perturbing interferences between the two that

cause heating of the atoms the polarisations are adjusted to be orthogonal and the

frequency shift between both beams is about 160MHz. The amount of light being

deflected by the AOMs is determined by the power of the RF-frequency driving the

AOM. In order to have an accurate control over the power we use a feed back loop

(see figure 4.19) which monitors the power level of each path on a photodetector. The

challenging task is to gain a reliable control over three orders of magnitude in power.

Typical powers to load our ODT are 9−13W but will be as low as few tens mW by the

end of the evaporation. After the beams passed through the chamber we only pick a

few percent of the intensity with a thin glass plate and reflect it onto a photodetector

which allows us to control the power over three orders of magnitude. This is achieved

with noise eater for feedback control. Essentially it is a differential amplifier that

adjusts the output signal such that the difference between the two input lines is zero.

4.5.1 Calibration of the ODT

The need of a noise eater also comes from the fact that although the intensity of the

laser is sufficiently stable after its warm up time (see figure 4.20) of roughly 30min it

has a long term fluctuation on the order of ±100mW which is too much to run the

evaporation reliably.

The power in a deflected order is a convoluted function of the response of the atten-

uation of the voltage variable attenuator and the AOM itself (see figure 4.18) which

both are strongly non-linear. Figure 4.21(b) shows the voltage VPD on the photode-

tector versus the control voltage Vc from the computer. If we turn on the feedback

the noise eater will stabilise the voltage of the photodetector given to a reference.
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Figure 4.19: Simplified schematic of the feedback loop to control the power in the

deflected order.

Figure 4.20: After turning on the emission of the fiber laser it takes about 30min to

emit light on a stable level. After warming up the fluctuation of the power is less

than 1%.
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(a) The blue line shows the measured output

voltage with a slow modulation. The pur-

ple line shows the measured voltage on

the photodetector which was attenuated

by a factor 10.
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(b) The response of the AOM as a function

of the control voltage Vc is visualised by

plotting the voltage of the photodetector

against the control voltage
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(c) The true power at the focus as a function of the control voltage. The blue dots are data

points and the red dashed line shows a fit to the data.

Figure 4.21: Calibration of the optical dipole trap: In order to calibrate the opti-

cal dipole trap we slowly ramp the control voltage over the desired range and find

therefore the response of the AOM as a function of the control voltage. The feedback

on the actual power at the focus results in a linear function of the voltage of the

photodetector.
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Figure 4.22: Power control without and with the feedback: The left figure shows the

power fluctuation on an average power level of ∼2W. In the right hand figure with

the feedback on the noise is significantly reduced and the average power is ∼2W as

well.

Therefore one needs to know only the power of the laser beam at any point along the

VPD − Vc-line (see figure 4.21). By taking the offsets of the voltage and power mea-

surement as well as losses along the beam-line lets us deduce the actual power of the

laser beam at the point of the focus which we need to know to calculate the potential

of the ODT. This system has been implemented on both beams and only differs in

the constant attenuation on the output of the RF-amplifiers and the attenuation of

light on the photodetector. In the left hand figure of figure 4.22 is shown the typical

fluctuation of the laser measured on a power head at a power level of 1.9W. The mean

and one standard deviation of the power is 1.92 ± 0.014W. The difference between

the maximum and minimum measured power is 62 mW which is on the order of the

power levels at the final evaporation and therefore too large. With the feedback on

(see right hand in figure 4.22) power level remains constant and the noise on the

data is determined by uncertainty of the used power head of 5mW. An example of a

calibration of one of our dipole traps is shown in figure 4.21(c) which shows the linear

relationship between the power at the focus and the voltage on the photodetector

which is programmed as the reference in the sequence control.
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4.5.2 Bandwidth of the noise eater

Loading the ODT and reducing the laser power to evaporate atoms from the dipole

trap happens on very different time scales and powers. For loading of the ODT the

power has to be high over seconds whereas the initial evaporation happens on the

time scale of ms. In order to make sure that on the order of the trap frequency the

bandwidth of the noise eater is high enough we modulate the reference voltage period-

ically. From those measurements we find that the noise eater follows a modulation up

to 20kHz which is far beyond the highest expected trap frequencies. In figure 4.23 we

see the modulation of the reference and the signal on the photodetecor. Please note

that although the sampling of the sinusoidal signal is at the limit of the resolution of

the computer cards the signal on the photo detector doesn’t show any sudden steps.

4.6 Imaging atoms

Several detection techniques exist to image cold atoms each with different advan-

tages and disadvantages. The three common techniques are phase-contrast imaging,

fluorescence imaging and absorption imaging. Phase contrast imaging is a non de-

structive method where an atomic sample is imaged with a non resonant laser beam

that is interfered with a reference laser beam. From the interference pattern one can

determine the spatial structure of the atomic sample. The advantage is that for a

large sample one can monitor the sample continuously in situ but the sample has to be

dense to gain a high contrast. Spontaneous emission of light of an atomic sample can

be monitored with a fluorescence technique, but the fluorescence of small samples

produces only weak signals and requires large numerical apertures. The standard

technique to detect cold atoms is absorption imaging which we will discuss in the

following sections.
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(a) Sinusoidal input signal. (b) Measured output signals.

(c) Fit to the measured reference signal. (d) Fit to the measured signal on the pho-

todetector.

Figure 4.23: The upper left graph shows the programmed sinusoidal

modulation4.23(a). The upper right shows the measured signal of the reference output

voltage and the signal on the photodetecor4.23(b). Fits to the measured signals are

shown for the reference voltage 4.23(c) and the voltage on the photodetecor 4.23(d).

From the fits we determine a phase difference between the reference voltage and the

voltage on the photodetector of 25.2◦ at a frequency of f = 10 kHz.
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Figure 4.24: Principle of absorption imaging: A resonant laser beam is absorbed by

the atomic sample. The ’shadow’ is imaged by two lenses of focal lengths f1 and f2

onto a CCD camera.

4.6.1 Absorption imaging

A resonant probe beam passing through the cloud (see figure 4.24) will be absorbed

and the intensity decreased according to the Lambert-Beer law

dI

dz
= −n σ0 I (4.2)

after transmission in z-direction through an atomic sample of density n(x, y) with

a resonant crossection σ0. We can neglect saturation for intensities that are much

smaller than the saturation intensity and find for the intensity of the transmitted

light

I(x, y) = I0(x, y)exp(−ñσ0) (4.3)

where ñ is the integrated intensity along the axis of propagation or the column density.

The image of this intensity would give a profile given by

S(x, y) = S0(x, y)exp(−ñσ0) + Sb(x, y) (4.4)

where the additional term Sb arises from scattered background light. In order to

determine the transmission we take three pictures on a CCD camera. One picture
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is taken where the laser is attenuated by the cloud (absorption image) A (see figure

4.25(a)), one where the CCD is exposed only to the laser (reference image) R (see

figure 4.25(b)) and a last one without any light illuminating the CCD (dark image)

D, (see figure 4.25(c)). The reference image should be taken immediately after the

absorption image to minimise interference effects because of the coherence of the

probe beam. This time frame is limited by the read out time of the camera. With

these three images we calculate the transmission T̃ of the cloud via

T̃ =
A−D
R−D . (4.5)

In figure 4.25(d) and 4.25(e) are shown two and three dimensional plots of a thermal

cloud. Integrating the column density, which is given by ñ = −ln(T̃ )/σ0 we find for

the number of atoms

N = −A

σ0

∑

lnT̃ (4.6)

where A is the area per pixel of the CCD camera. The three images are taken after a

signal triggers the software to read out a camera which itself is triggered three times.

One has to be careful that the time between the three images is long enough to read

out the previous image before another is taken. The user can choose a folder in the

software to save the pictures (16 bit/ *.tiff) which are taken and automatically given

a filename that includes the date, which picture of the three it is and a number. In

order to detect the atoms we illuminate the sample with a laser beam with a frequency

of the |F = 2〉 → |F = 3〉 transition. Because of the resonant probe light for the

imaging the atoms are accelerated due to absorption and spontaneous emission of

photons. Let us assume that the sample of atoms is at rest before it illuminated with

the probe beam. The displacement for an atom at rest is given given by the recoil

velocity of the probe light vrec, the number of scattered photons Np and the exposure

time texp by

∆x =
1

2
Np vrec texp. (4.7)
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(a) Absortion

imageA
(b) Reference

image R
(c) Dark image D (d) Calculated

optical den-

sity OD =

(A−D)/(R−D)

(e) Three dimensional

representaion of the

optical density

(f) Cross section along

the x-direction of the

cloud through the

maximum (dots) and

Gaussian fit (dashed

line).

(g) Cross section along

the y-direction of the

cloud through the

maximum (dots) and

Gaussian fit (dashed

line).

Figure 4.25: Imaging of cold atoms: The three images A,R and D are taken in a

sequence to determine the optical density. After evaluation of equation (4.5) one can

plot two or three dimensional plots (figure 4.25(d) and 4.25(e)) of the optical density.

In order to determine the width of the cloud Gaussian profiles are fitted to cross

sections through the maximum of the cloud figure 4.25(f) and 4.25(g).
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The velocity an atom at rest gains by absorption or emission of a photon is given by

vrec = h̄k/m, where m is the mass of the atom, h̄ Plancks constant and k = 2π/λ

the wavenumber of the probe light. The number of scattered photons is large near

the resonance hence we can neglect the uncertainty and the number of photons is

determined by the scattering rate (see (3.4)) and the exposure time Np = Γtexp,

therefore we find

∆x =
Γ

4

I/Isat

1 + I
Isat

+
(
∆
Γ

)2 vrec t
2
exp. (4.8)

For a short pulse of 50µs on resonance at an intensity of I ≈ 0.1Isat the displacement

becomes 12.5µm. The diffuse image of a displaced point source appears to be a disk

of radius Rd = d/2f ∆x, with distance d and focal length f of the imaging system.

For our example and an numerical aperture of 0.17 the radius of the disk is 1.5/mum

and as we will see in the next section below the diffraction of the imaging system in

our experiment.

4.6.2 Optics

Detection along gravity

We will discuss here the optical system being used. Optimal resolution is given if

the imaging system is diffraction limited rather than aberration limited. The angle Θ

where the first minimum of a diffraction pattern of a point source is observed through

a circular aperture is given by

sinΘ =
1.22λ

a
, (4.9)

where λ denotes the wavelength of the light and a the diameter of the aperture. The

spot size Dspot of a point on a screen at distance d is given by

Dspot = 2 d tan

(
Θ

2

)

. (4.10)

The windows of the chamber have an aperture of 1.4′′ and the distance from the

center of the chamber to the outer side of a window is 12cm. Substituting (4.9) in
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(4.10) yields for the smallest distance where two points can be resolved

Dspot = 2 d tan

(
1

2
arcsin

(
1.22λ

a

))

(4.11)

= 2.5µm. (4.12)

The goal of the optimisation of the imaging system (see figure 4.24) was to find

a suitable configuration of commercially available lenses. It is desirable that each

single pixel of the CCD camera is exposed to just one single resolved spot. For the

imaging a EC1380 Prosilica camera is used that has a pixel-size of 6.45µm. Further

details of the camera are described in appendix A. Those practical constraints require

a magnification by a telescope of at least a factor of 2.5. Design and optimisation

of the telescope was done with the ray-tracing program Optics Software for Layout

and Optimization (OSLO). As a result both lenses f1 and f2 (compare figure 4.24)

have to be a set made of two lenses in order to reduce aberrations and have to be

spaced very precisely. The focal length of the first set is f1 = 348.2mm (see figure

4.26(b)) and the second has a focal length of f2 = 116.1mm (see figure 4.26(a)) with

a magnification of M = 3. To test the resolving power of the telescope we used a

test target of the US Air Force (test target 1951, see figure 4.27(a)) on which each

element contains three bars in horizontal and vertical directions. These elements

are part of groups and with increasing group and element number the number of

line pairs per millimetre increases. Figure 4.27(b) shows an image taken with the

Prosilica camera. The smallest structure that cannot be resolved is the 6th element

of the 7th group (see figure 4.27(c)) which means that there are 228 line pairs per

millimetre. Therefore the resolving power of the optical system is 2.2 µm e.g. the

imaging is diffraction limited. The imaging system was optimised for the Prosillica

camera with a pixel size of 6.45 · 6.45µm2 and taking the magnification into account

a square of ∼ 2µm is imaged onto one pixel. The camera from Prosillica was later

replaced with a camera from Princeton Instruments. This camera has a lower noise

and a higher sensitivity and a pixel size of 13.0 · 13.0µm2. Therefore the effective

resolution decreases to ∼ 4µm.
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(a) The first with a focal length of

f=116.1mm focuses on the atomic

sample.

(b) The second doublet with a focal length

of f=348.2mm focuses the image of the

atomic sample onto a camera.

Figure 4.26: The diffraction limited system designed in OSLO. Two doublet lens

systems of commercially available lenses are designed in OSLO to resolve near the

diffraction limit of ∼ 2.2µm.

The major disadvantage of imaging along the vertical axis is that for increasing time

of flight the cold cloud of atoms drops out of the focal plane. The distance increases

as s = 1/2gt2 and after a typical time of flight of 15-25 ms the distance from the

initial position of the cloud until it is detected has increased to 1 − 3mm which is

larger than the depth of the focus.

Detection in the horizontal plane

To overcome the problem that during the time of flight the atom cloud drops out

of the focal plane we set up another imaging direction in the horizontal plane. The

optical system is much simpler and just consists one f = 125mm lens in a 2f-2f

configuration with a magnification of ∼ 1 (schematic in figure 4.28).

4.6.3 Cameras

For taking the absorption images two cameras were available. We can use the same

camera we use for the continuous imaging of the fluorescent light of the MOT the

Proscillica, or a Pixis camera with very low noise. Both configurations come with ad-
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(a) Photocopy of the target 1951.

(b) An image taken of the inner structure

of the target.

(c) The 7th group and its elements can be

seen. Resolving the 5th group and just

not the 6 means a spatial resolution of

2µm.

Figure 4.27: The resolving power of an optical system can be determined with the

resolving power test target 1951. The largest bar that cannot be resolved determines

the resolving power. The number of the group and element determines how many

line pairs per millimetre are resolved.

Figure 4.28: 2f-2f imaging in the horizon-

tal plane.
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vantages and disadvantages. The advantages of the Proscillica camera are automatic

file saving and online preview of the absorption images with a self written program in

Labview, but a higher noise on the camera. The advantage of the Pixis camera is the

low noise at high sensitivity, but it comes with the disadvantages of having to start

the camera manually. The software provided with the camera lets the user choose

from various options and settings to set up the camera. For absorption imaging it

is recommended to take one picture before the actual three pictures are taken in or-

der to remove any residual charges on the camera. The readout time for large areas

goes up to about 500ms which the operator of the experiment has to keep in mind

when designing a sequence. The saved pictures are stored in a desired folder and are

analysed using other software like Mathmatetica or MatLab.

4.7 Analysis of absorption images

In chapter 2 we derived an expression for the critical temperature Tc where Bose-

Einstein condensation occurs and an expression for the fraction of condensed atoms

for a temperature below Tc. That means that for a temperature of the atomic sample

below the critical temperature both a thermal and a condensed phase are present

with a characteristic bimodal distribution

n(r) = nth

3∏

i=1

Exp

(

−x2
i

σ2
i

)

︸ ︷︷ ︸

thermal phase

+nc Max

(

0, 1 −
3∑

i=1

x2
i

r2i

)

︸ ︷︷ ︸

condensed phase

(4.13)

where nth is the density of the thermal fraction at the centre of the cloud and σi

is its width along the i-th direction; similarly nc is the density of the Bose-Einstein

condensate and its radii ri. Along the imaging axis we measure the column density

of the cloud. Thus we integrate (4.13) along one axis and rename the remaining

coordinates ρ and z and find an expression for the column density the following
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expression

ñ(ρ, z) = ñ0 exp

[(
ρ

σρ

)2

+

(
z

σz

)2
]

+ nc Max

[

0, 1 −
(

ρ

rρ

)2

−
(

z

rz

)2
]3/2

. (4.14)

Fitting (the fitting is performed in Mathematica, see appendix B) this function to the

measured optical density works very well and we can determine the number of atoms

in the two fractions by the separate integration of both profiles. In the following

section we will discuss how important quantities are extracted from these profiles.

4.7.1 Temperature

In order to determine the temperature of an atomic ensemble the atoms are released

from the trap and allowed to expand ballistically in free fall. Therefore the width σ

of the atomic cloud grows as a function of time as

σi(t) =
√

σ2
0,i + ṽ2t2 (4.15)

where σ0 is the initial size. The velocity distribution of the trapped atoms obeys

the Maxwell-Boltzmann distribution with the most probable velocity ṽ =
√

2kBT/m,

with the Boltzmann constant kB, the mass m of the atom and temperature T . About

60% of atoms are within the range of zero velocity and the most probable velocity ṽ.

The trapped ensemble will expand when released from the trap to a size proportional

to the square root of the temperature of the ensemble. Taking images for different

time of free expansion we can determine the temperature from fitting σ(t) to our data

and extracting the most probable velocity and rearranging for T = ṽ2m/kB/2. We

can also determine the temperature from two measurements if the time of flight is

short and the temporal difference of the two measurements is small or the time of

flight is long e.g. ṽ2t2 ≫ σ0,i, where the initial size of the cloud becomes negligible,

we can approximate the temperature by

T =
m

kB

σ2
2 − σ2

1

t22 − t21
. (4.16)
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The temperature of the ensemble can also be determined from only one image if one

knows well the initial geometry of the trap e.g. the trap frequencies (ωi) and if the

time of the expansion is larger than mean trapping frequency tTOF ≫ ω̄−1, where

ω̄ = (ω1ω2ω3)
1/3. Then we find the following expression for the temperature [5]

T =
m

kB

ω2σ(t)2

1 + ω2t2
. (4.17)

4.7.2 Phase space density

An important parameter to know is the phase space density which is given by

PSD = nλ3
dB, (4.18)

where n is the density of the atoms and λ3
dB the thermal de’Broglie wavelength.

Knowing the temperature and the peak density we can calculate this by

PSD = n0
h√

2πmkBT
. (4.19)

We can also write the phase space density as a function of the number of atoms N ,

the temperature T and mean trapping frequency ω̄

PSD = N

(
h̄ω̄

kBT

)3

. (4.20)

4.7.3 Fringe removal

The coherence of the imaging beam causes interference patterns caused by mechanical

noise. The phase of the fringes of the interference patterns are randomly distributed

over the interval {0..2π}. For small numbers of atoms at a long time of flight the

height of the fringes can be as high as 10% of the maximum optical density. These

fringes lead at times to a negative number of atoms when calculating the number of

atoms by equation (4.6). The noise caused by the fringes can be reduced significantly

by using the following technique which is described in more detail in [70, 71, 72]. The

basic idea of this technique is to compute for an absorption A a reference image R
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from a linear superposition of a set of reference images R1...RN , e.g. R =
∑N

i ciRi.

The coefficients ci are determined by a scalar product of the absorption image A
and the reference image Ri. Each individual reference image shows a different noise

pattern caused by various reasons. Therefore by determining the coefficients ci will

encounter for noise caused in a given absorption image. Similar to the Gram-Schmidt

algorithm where we find for a set of given vectors a orthonormal basis, we want to

find an orthonormal basis B1..Bn of images for a set of reference images R1...Rn.

Projecting the absorption image A onto this basis gives the reference image R to the

absorption image A. First define the following scalar product of two images I and J
by

(I,J ) =

ymax∑

ymin

xmax∑

xmin

I[y, x] J [y, x] (4.21)

where I[y, x] is the value of the image I of the pixel at [y, x]. From a set of reference

images R1..RN we calculate the basis set B1..BN via

B1 =
1

√

(R1,R1)
· R1

B2 =
1

√

(C2, C2)
· C2 with C2 = R2 − (R1,B1) · B1

...

Bj =
1

√

(Cj , Cj)
· Cj with Cj = Rj −

∑

1≤i<j

(Rj,Bi) · Bi

With this basis set of images we project the absorption image A onto this basis to

find the reference image R by

R′ =

N∑

i=1

(A,Bi) · Bi (4.22)

and after normalisation

R =
||A||
||R′|| · R

′. (4.23)

The norm we used here is given by

||I|| =

ymax∑

ymin

xmax∑

xmin

I[y, x] −
fymax∑

fymin

fxmax∑

fxmin

I[y, x] (4.24)
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(a) A noisy image
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(b) Mean of nine images
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(c) Removed fringes with an

optimal reference image

Figure 4.29: Removing fringes by the mean and an optimal reference image: The noise

from fringes of an image 4.29(a) can be reduced by taking the mean of consecutive

images 4.29(b) or using an optimised reference image 4.29(c) as descried in the text.

The outer frame and inner frame 4.30 to calculate the norm of (4.24)

where the summation over [fymin
, fymax

] and [fxmin
, fymax

] is a frame in the image

I that contains the atoms see figure 4.30. With this technique we can improve the

quality of an image strongly distorted by fringes 4.29(a) as we can see in figure 4.29.

To remove the fringes in the image shown in figure 4.29(a) we took a series of nine

images where the image 4.29(a) was the worst distorted in the series. We use the same

series to calculate a basis containing nine orthogonal reference images to remove the

fringes. In figure 4.29(c) the fringes are removed with the method describes above. In

figure 4.29(b) the mean of these nine images is shown and it still shows a distinctive
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Hxmin,yminL

H fxmin, fyminL

H fxmax, fymaxL

Hxmax,ymaxL

Figure 4.30: Frames of

the norm given in (4.24)

fringe pattern. Removing those fringes comes at a cost. It is not economic to use

all pictures in a data set to calculate the basis set. A less extensive way is described

in [71] which we just want to outline here. From a series of images one chooses a

subset of images which are normal according to the scalar product given in (4.21).

This subset of images is then used to determine the optimal reference image of the

series.
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5 MOT

To obtain an ensemble of cold atoms one has to slow down atoms released from a

source at a much higher temperature. In our experiment we can release 87Rb atoms

from a source at a temperature of a few hundred Kelvin and cool them in a magneto-

optical trap [73] (see section 3.1) to a few hundred micro Kelvin. Using a temporal

dark MOT and molasses cooling (see section 3.2) we can increase the density and

decrease the temperature to improve the trapping in a optical dipole trap.

5.1 Optimisation of the MOT

In chapter 3 we discussed a simplified model of a MOT and extended the model for

87Rb. The optimum operation of a MOT depends on several parameters which have to

be determined experimentally. In the following sections we will investigate the influ-

ence of these parameters on the capture efficiency, density, temperature and number

of atoms in order to find the optimum operation of the MOT in the experiment. The

MOT can be loaded in two different ways. We either increase the background pres-

sure of 87Rb by releasing 87Rb atoms from a hot source or by turning on a source of

UV-light which ejects 87Rb from the interior surfaces [74].

5.1.1 Magnetic field gradient

In order to investigate the loading as a function of the applied current in the anti-

Helmholtz configuration we loaded the MOT only by ejecting 87Rb atoms from interior

85
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surfaces by turning on a source of UV-light. Figure 5.1 shows the number of atoms as

a function of time and the loading rates1 (see section 3.2.2) for the applied current.

A lower current results in a weaker gradient and therefore a weaker trap but with

a larger trapping volume. While a higher current produces a stiffer trap but with a

smaller volume. We are able to take advantage of this in the following way: we load

the MOT at a lower current but then increase the current to compress the cloud to

optimise the loading into the optical dipole trap. We find the fastest rate at a current
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(b) Loading rates of the MOT for different

currents.

Figure 5.1: The dependence of the loading of the MOT for different currents and the

loading rates at each current.

of 6.4 A which results in a weakly confined MOT. A higher current results in a lower

loading rate but a tighter confinement which also enhances the density in our MOT.

5.1.2 Intensity of the MOT laser

We vary the power of the MOT beams at a constant current to investigate the influ-

ence on the loading of the MOT. In figure 5.2 we can clearly see that we trap more

1The number of atoms in the MOT as a function of time during the loading is given by

N(t) = Nmax(1− e−t/τ ), where Nmax is the maximum number of atoms in the saturated MOT and

τ a time constant given by the losses of atoms from the MOT. The loading rate Φ is given by the

ratio of maximum number of atoms in the MOT Nmax and the time constant τ , Φ = Nmax/τ .
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the MOT beams.

Figure 5.2: Number of trapped atoms as a function of the laser power of the MOT

beams. We find for higher powers more trapped atoms and higher loading rates.

Trapping laser repumper Quadrupole field

Intensity 200mW 20mW current 9-11 A

detuning -2.6 Γ 0 gradient 8.1-9.9 G/cm

diameter 2.5cm 2.5cm

Table 5.1: Typical operating parameters of the MOT.

atoms at a higher loading rate at a higher total power of the MOT beams.

5.2 Summary of all MOT parameters

Let us summarise the parameters of the MOT in tables showing operating parameters

and measured quantities of the MOT. The gradients used are typical but the large

diameters of the beams and the power of 200mW led to a saturation intensity of

≈ 1.6I0 resulting in smaller number of atoms in the MOT. In the next we will show

how the MOT was improved significantly by replacing the cooling laser with a more

powerful one and replacing the free space MOT with a fibre coupled MOT.
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Experimental MOT parameters

N ∼ 25 106

n ∼ 4.5cm−13

T ∼ 200µK (after molasses 50µK)

phase space density ∼ 10−7

loading rate ∼ 30 106 atoms/s

Table 5.2: Measured properties of the MOT.

5.3 Fibre coupled MOT

A major problem that occurred with the MOT, when the beams were propagating in

free space, e.g. the distribution of the light and the transfer of the six beams by using

mirrors, was the instability of the alignment and overlap of the MOT beams with the

repump beam and the drift of the MOT beam alignment with respect to the magnetic

field. We improved the set up by replacing the free space propagating beams by fibre

coupled beams. In figure 5.3(a) we see in the right hand corner the fibre couplers

of the repumper and cooling laser. Both beams overlap behind a polarising beam

splitter and pass through a telescope. They are distributed onto three separate arms,

split into two and each single beam passing through another telescope before entering

the science chamber. As the position of the MOT shifted, the loading was not

optimal or alternatively the power balance of the beams changed noticeably from day

to day. It proved a time consuming procedure to optimise our MOT, and the wish to

simplify the optical system made us to decide to replace the free space MOT optics

with a fibre coupled system. Distributing the light for the MOT beams with half

wave plates and polarising beams splitters did not change but instead of delivering

the light into the chamber with free space mirrors we coupled each beam into an

individual polarisation maintaining fibre (Thorlabs PM-780). At the bare end of the

fibre we mounted a quarter wave plate and a f = 100mm lens assembled in a 1′′ tube
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(a) Photograph of the set up. In the foreground are

the optics distributing the light onto the six arms

of the MOT.

(b) A schematic of the optics of the free space MOT.

Figure 5.3: A schematic of the free space MOT and a schematic showing the distri-

bution of the light. Further description see text.
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(a) The simple and easily maintained set up according to the scheme in figure 5.4(b).

(b) Schematic overview of the fibre coupled MOT.

Figure 5.4: A schematic of the fibre coupled MOT and a schematic showing the

distribution of the light. For description see text.
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Experimental fibre MOT parameters

N up to 95 · 106

n up to 1014cm−3

T ∼ 200µK (after molasses 50µK)

phase space density ∼ 10−6

Table 5.3: Typical operating parameters of the fibre MOT.

system (see figure 5.4(b)and 5.5 ). By adjusting the wave plate we can choose the

polarisation and collimate the beam with the position of the lens. These tubes were

mounted in front of the chamber. Although the beams were smaller in their diameter

than the free space MOT (�2′′) the saturation level increased to I/I0 ∼ 5.5. With

the fibre coupled MOT we trap up to 100 · 106 atoms (see figure 5.7) and achieve a

temperature of T = 50µK after the compression in the MOT which we will describe

in the next section.

5.3.1 Compression and temporal dark MOT

The density and temperature of the atoms trapped by the MOT can be significantly

improved by compressing the sample and applying a temporal dark MOT. The first

technique simply means that the gradient is increased such that the trapped atoms

Figure 5.5: To collimate

and adjust the polarisation

of the trapping beams of

the MOT a quarter wave

plate and a f = 100mm

are mounted into a 1′′ tube

with the fibre mount.



92 5 MOT

Figure 5.6: Expansion of the MOT after compression and a temporal dark phase.

Analysis indicates a temperature of 50µK using (4.15).

are trapped in a smaller volume hence the density is higher. During the dark temporal

MOT the intensity of the repumper is lowered to just a fraction of its initial intensity

and the detuning of the trapping beams is increased further. With applying these

two techniques to the sample after loading the MOT we trap nearly 50 · 106 atoms

at a temperature of T=50µK (see figure 5.6) and a density of ∼ 1014cm−3. At this

stage the phase space density is a about ∼ 10−6 and further evaporation is required

to reach quantum degeneracy. How we achieve this in an optical dipole trap we will

discuss in the following chapter.

5.3.2 Initial number of atoms in the MOT

While attempting to maintain constant conditions for the loading of the dipole trap

and evaporation one has to keep in mind that with every run of the sequence the

background pressure of 87Rb increases slightly. In figure 5.7 we see the long term



5.3 Fibre coupled MOT 93

behaviour of the number of atoms in the MOT over time for varying the current

through the dispenser. This data was taken such the sequence was running back to

back over at least 18 repeats. Without the dispenser we load from the remaining

background into to the MOT and about 17.5 · 106 are left after the compression.

Loading the MOT at current of 5A increases the number of atoms almost linearly but

does not plateau fast. Loading the MOT at 5.4 A through the dispenser the number

of atoms after the compression of the MOT plateaus after nearly ten repeats and

remains almost constant at 38 · 106 atoms. We observe a slow increase in the number

of atoms after the compression of the MOT at current of 5.8A. Here it takes about 20

repeats to settle the number of atoms at nearly 100 · 106 atoms. Loading at a higher

current will increase the initial number of atoms in the optical dipole trap but will

also increase collisions with the hot background gas.
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Figure 5.7: Loading of the MOT for different currents of the dispenser. Loading

the MOT just by increasing the background pressure with the UV light loads about

20 · 106 atoms into the MOT (upper left figure). At a current of 5A in the dispenser

the number of atoms in the MOT builds up very slowly over time (upper right figure).

For a current of 5.4 A the number of atoms in the MOT settles after 10 successive

runs of the sequence at about 30 ·106 atoms and at a current of 5.8 A at 95 ·106atoms.
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In the previous chapter we discussed the physics of a MOT. We saw that the key of

trapping and cooling of atoms in a MOT is near resonant scattering of photons with

a spatial dependency of the absorption probability. We also saw that in a MOT we

can not reach a temperature and phase space density sufficient to undergo the phase

transition to Bose-Einstein condensation.

In section 3.3 we discussed the physics of trapping neutral atoms in a far detuned

focused laser beam. We also introduced the technical realisation and control of the

optical dipole traps in section 4.5. In this chapter we will discuss the dynamics of the

loading and evaporation in our traps.

6.1 Concepts and general ideas

The previous comprehensive discussion about the optical dipole force (see section

3.3) will now allow us to discuss the general concept of trapping and cooling atoms

in a optical dipole trap and compare it qualitatively to the more common approach

in a magnetic trap [75, 76, 77]. A typical initial condition for evaporative cooling

in an optical dipole trap is that the depth of the trap is 10 times deeper than the

temperature of the atomic ensemble i.e. η = U0/kBT ∼ 10. However, by simply

lowering the power of the laser of a single beam trap the depth of the trap becomes

shallower and it becomes more likely for the hottest atoms to escape the trap. By

reducing the power one also weakens the confinement. Along the radial direction the

trapping frequencies are usually still on the order of 2πf = ω ∼1kHz at lower powers

95
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but the confinement along the axial direction decreases to a few Hz. The atoms spread

out along the axial direction diluting the density at the centre of the trap but where

a high density is essential to provide a fast elastic collision rate and hence a higher

thermalization rate. To confine the atoms along the weak direction of the dipole

trap one can cross two beams to provide a stronger confinement and also to provide

an isotropic geometry of the potential. In the combined trap the power is further

decreased until the temperature of the remaining atoms in the trap falls below the

critical temperature for Bose-Einstein condensation. In an optical dipole trap using a

linearly polarised laser the trapping is independent of the spin state, in contrast to a

magnetic trap (see figure 6.1). In a magnetic trap the harmonic potential is given by

the geometry of wires conducting a current. Highly energetic atoms are rejected from

the trap by driving RF-transitions in to a non-trappable state. This takes energy out

of the remaining ensemble and the remaining atoms rethermalise by elastic collisions

to a lower temperature. The geometry of the potential remains constant the during

the evaporation. Typical dipole traps for evaporative cooling are formed with C02

[20, 67, 78, 79, 80] laser operating at λ = 10.6µm or at λ = 1565nm [81] and more

recently fibre lasers with a wavelength of λ = 1064nm are used as well [20]. A larger

detuning comes at the cost of higher power for a constant potential but a longer

wavelength also means another trap geometry as shall be seen. Typical waists of

optical dipole traps range from 20µm to 80µm. Let us assume a waist of 30µm for

two beams at wavelengths of λ1 = 10.6µm and λ2 = 1064nm. The Rayleigh lengths

for beams are zR1 ∼ 0.26mm and zR2 ∼ 2.62mm. A ten times larger wavelength

results in a ten times smaller Rayleigh length, this is particularly important in a

crossed optical dipole trap, see figure 6.2. The potential for λ1 is isotropic whereas

for λ = λ2 the trap has a dimple at the intersection of the two beams. The effective

depth of the dimple for the beam of λ = λ2 is just U0/2 and atoms which are hotter

than that reside in the wings of the potential. A detailed model by [82] show the

population of atoms in the wings as a function of the two wavelengths λ1 and λ2 as
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Figure 6.1: Principle of the evaporation in a magnetic trap (left hand side) and a

optical dipole trap (right hand side); for a higher temperature (top row) and lower

temperature (bottom row). In a magnetic trap the potential for a given spin state

remains constant, whereas in an optical dipole trap the trapping is spin independent

but the potential changes in time.
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a function of the ratio of the kinetic energy and the ’true’ depth of the potential.

The general conclusion of this model shows that for a larger wavelength, hence a

shorter Ryleigh length, fewer atoms populate the wings and for a shorter wavelength

one needs a deeper trap to suppress the population of the wings. Furthermore the

positioning of the optical trap with respect to the atomic cloud that it is loaded from

depends on the temperature of the cloud, the power and the wavelength of the laser

for the optical dipole trap. Again we want to simplify the discussion so we only vary

the wavelength of the optical dipole trap and leave all other parameters constant.

Usually optical dipole traps are loaded from a magneto-optical trap.

The larger the surface area of the optial dipole trap which atoms can enter the more

atoms are trapped in the optical dipole trap. A simple model to maximise the number

of atoms in the ODT was developed by [83] and experimentally verified by [84]. By

approximating the volume of the trap with a cylinder of the length of the diameter D

of the MOT and a radius r from the axis of propagation of the ODT to an equipotential

line, if the Rayleigh length is larger than the diameter of the MOT (zR ≫ �MOT).

The volume given by this trap is V = πDr2. At the focus of the trap the radius of

this cylinder is the smallest and it becomes larger further away from the focus has

a maximum and decreases again (see figure 6.3). With increasing radius the volume

of the trap increases as well. In order to find the optimum position we basically use

equation 3.25 for a constant potential (temperature) and vary the radius r. Setting

U(r, z) = Uc ∼ kBT and solving for the radius we find

r(z) =

√

w2
0

2
[1 + (z/zR)2]ln

(
U0

Uc

1

1 + (z/zR)2

)

(6.1)

where w0 is the waist of the trap at the focus, zR is the Rayleigh length, U0 the depth

of the trap and Uc the cut off depth. This model is based on the idea of maximising the

surface area A of the ODT through which the atoms are entering the ODT [80]. We

call the distance from this position to the centre of the ODT zmax. Figure 6.3 shows

the radius as a function of the distance from the centre for two different wavelengths
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Figure 6.2: Two different poten-

tials for wavelengths at λ = 10λ0

(purple line) and λ = λ0 (blue

line), but same power and waist

as a function of one direction

through the centre of the trap.

where one is ten times larger than the other and η = U0/Uc = 10. The y-axis is in

units of the radius in the centre of the trap and r0 denotes the radius to equipotential

line at the focus of the trap. Therefore we see that for these conditions the optimum

of the radius is just ∼ 1.26r0, whereas the axial positions of the optima differs by a

factor ten. The dashed lines indicate the size of the MOT and the shaded area would

be a partial volume of the MOT from where the atoms are loaded into the ODT.

Therefore the axial overlap of the centre of the MOT and of an optical dipole trap

at a wavelength of 1064nm is not as critical as for for a trap at a larger wavelength.

An experimental verification of this model was done by [84] that shows a distinctive

effect of the displacement of the ODT with respect to the MOT. In their experiment a

Ti:saphire-laser was used at a wavlength of 837nm with a waist of 12µm and optimal

diplacements of up to 15mm where found. Hence the expected effect for an ODT at

a wavelength of 1064nm and a waist of approximately 30µ, hence a Ryleigh lenght of

2mm, as in our experiment, will not be crucial.

6.2 Optical dipole trap with a 1064nm fiber laser

In the following sections we will focus on the characterisation of the dipole traps, our

loading scheme and will discuss the evaporation to reach quantum degeneracy.
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Figure 6.3: The solid lines show the equipotential lines of two dipole trap at a

wavelength of λ1 = 10µm (violet) and λ2 = 1.064µm (blue), where the ratio of the

kinetic energy of the atoms and the trap depth is η = 10. The size of the MOT (to

scale) is shown by the shaded area. By approximating the overlapped volume of the

MOT and an optical dipole trap by V = πDr2, where D is the diameter of the MOT

and r the radius from the axis of propagation to an equipotential line, the volume

can be increased by displacing the focus of the optical dipole trap with respect to the

centre of the MOT.
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Figure 6.4: Excitation spectrum of ODT1 at 12.6W and Lorentzian fits. The reso-

nance positions are at ωr/2π = f = 3882 ± 79Hz and 2ωr/2π = 2f = 8534 ± 89Hz.

Again we find from this a waist of 28µm.

6.2.1 Parametric heating of the optical dipole trap

We discussed in an earlier section (section 3.3.6) the dynamics of the parametric

excitation. The two beams in our setup have a diameter of 5mm and are focused by a

f=200mm lens. The expected waist at the focus therefore is ∼ 30µm. The excitation

spectrum of trap ODT1 at a power of 12.6W over a range from 750 Hz to 10.5 KhZ

shows two significant resonances at ωr ∼ 3.9kHz and 2ωr ∼ 8.2kHz (see figure 6.4).

Substituting these positions into equation (3.26) we calculate a waist of w1 ∼ 28µm

for ODT1 and of 36.0 ± 0.6µm for ODT2 within reasonable agreement of the design

(see 4.5). We also repeated this measurement at a different power of 7.31W (see figure

6.5) to confirm our previous result of the waist. Again by substituting the power and

resonance positions into (3.26) we determine a waist of 28µm.
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Figure 6.5: Excitation spectrum of ODT1 at 7.31W and Lorentzian fits. The reso-

nance positions are at ωr/2π = f = 3109 ± 55Hz and 2ωr/2π = 2f = 6514 ± 10Hz.

This corresponds to a waist of 28µm.

6.2.2 Collision rates and loss mechanisms

The life time of a trap is determined by the number of atoms remaining in the trap

after different holding times in a constant trap. In a simple model [62]

dN

dt
= −αN − βN2 − γN3 (6.2)

where α is an exponential loss rate caused by collisions with the hotter background

gas and heating mechanisms, β a loss coefficient among inelastic collisions of two

atoms and the γ the inelastic collision of three atoms.

Elastic two-body collisions The rate of the evaporation depends on the number

of atoms N in the trap, the ratio η = U0/kB T of thermal energy of the atoms kB T

and the depth of the trap U0 the trap an the elastic collision rate γel and the rate of

evaporation is given by

Ṅ = −Nβelηe
−η (6.3)
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where the elastic collision rate βel is given by

βel = N

(

8
√

2
a2 m

πkB

)
ω̄3

T
(6.4)

where

• a is the s-wave scattering length

• m is the mass of the atomic

• ω̄ = (ωxωyωz)
1/3 is the mean trapping frequency

three-body collisions The three body collision rate is proportional to the three

body loss coefficient Γ3 [85], the effective volume Veff = (2πkBT/m)3/2(1/ω̄)3 of the

trap and density n0 of the atoms in the trap and is given by

γ = Γ3 Veff n0 (6.5)
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6.3 Evaporating

A simplified schematic overview of the entire procedure from loading thermal atoms

into a MOT and the evaporation to a BEC in our ODT showing the intensity detun-

ings and the strength of the magnetic field is given in figure 6.6. The three stages of

the procedure are

1. loading the MOT and transfer into initial single beam trap

• loading the MOT compression in a CMOT

• transfer into initial single beam trap

2. evaporation

• initial evaporation in a single beam trap

• compression into a crossed trap

• final evaporation in the crossed trap

3. imaging after time of flight

which will be described in more detail in the following paragraphs.

Loading the MOT and transfer into initial single beam trap

We load our MOT for 13 seconds while one of our dipole trpas is at maximum power.

After loading the MOT we slightly increase over a few tens of milliseconds the mag-

netic gradient to compress the atomic sample in order to increase the density. Further

cooling and increase of the density is achieved by the technique of a short temporal

dark MOT where the detuning of the trapping beams of the MOT is increased to

∆ = −143MHz with respect to the |F = 2〉 → |F = 3〉 transition and the intensity of

the rempumper is lowered to ∼ 40µW/cm2. Upon extinguishing the repumper and

turning off the magnetic field we apply molasses cooling for a duration of 1 ms. The
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Figure 6.6: Schematic of the loading and evaporation sequence .

initial number of atoms in the optical dipole will improve with higher densities and

higher number of atoms after the compression of the MOT and the temporal dark

MOT. The initial number of atoms in our dipole trap as we vary the detuning of the

MOT beams and the power of the repumper is shown in figure 6.7. We detect up to

(5.0 ± 0.5) million 87Rb atoms after holding the atoms for 100ms in the dipole trap

and after turning off all MOT beams (see figure 6.6).

Evaporation

In order characterise the evaporation we measured the lifetime of the atoms in trap at

the end of each step of the evaporation. In figure 6.8 is the decay of the number of for

these different steps shown. The initial evaporation in broken up into three sections

before the compression in the crossed trap and final evaporation towards quantum

degeneracy. At each of these steps we hold the atoms in the trap over a increasing
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Figure 6.7: The number of atoms

in the initial trap as a function of

the power of the repumper and the

detuning during the temporal dark

MOT. The number of atoms max-

imises at a power of 40µW in the

repump beam for all detunings the

MOT trapping beam.

time at final power of each step. The life time of the of trap is determined by a

rapid loss of atoms followed by a slower decay determined by collisions with the hot

background gas. Fitting our data to this model given in (3.37) works poorly and we

assume that other loss mechanisms have to be taken into account such as the light

scattering taking other energy levels into account other than those from the D1 and

D2 line. The line width of the used laser is 2 nm and possibly there is a coupling

between states via a virtual states [86]. Estimating the 1/e life time of each step (see

figure (see 6.10(a)) we see that first the life time increasing from 6s up to 11s. During

the compression of the atoms in the crossed trap the three body loss rate increases

significantly (see figure 6.10(b)) and hence the life time decreases. During the final

evaporation the three body loss rate decreases and the life time is recovering to 6s.

Throughout the evaporation the elastic collision rate remains high such the remaining

atoms rethermalise fast (see figure 6.11).

The evaporation is described in section 6.3. With the decay of the number of

atoms in the trap energy is removed from the system and lowers the temperature (see

figure 6.8) of the remaining atoms and increasing the phase space density until the

too few atoms remain in the trap to maintain a high collision rate. Therefore the

decay of the temperature stagnates and the phase space density decreases (see figure

6.8) as atoms are lost but no longer remove energy from the system.
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Figure 6.8: Characterisation of the evaporation. In each plot is shown the number of

atoms N , the phase space density φ and the temperature T of the atoms in the trap

as a function of the hold time along the stages of the evaporation.
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Hold initial evaporation I initial evaporation II

initial evaporation III Compression F1

F2 F3 F4

Figure 6.9: Absorption images at the end of each section of the evaporation scheme

see text and figure 6.6.
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Figure 6.10: 1/e life time 6.10(a) and three body loss 6.10(b) rate of the trap dur-

ing the evaporation: The sudden rise of the three-body loss rate is caused by the

compression of the atoms in the crossed trap. The lines are a guide to the eye not

data.
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Figure 6.11: Elastic two-body collision rate 6.11(a) and three-body loss rate 6.11(b)

during the evaporation: The sudden rise of the three-body loss rate is caused by the

compression of the atoms in the crossed trap. The lines are a guide to the eye not

data.
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Overall we decrease the temperature from 160µK to 1µK and increase the phase space

density by a factor 3·104 from 10−5 in the initial trap to 0.3 until we start to evaporate

into the quantum degenerate regime.

6.3.1 Linear ramps at the final evaporation

After the compression into the crossed we kept evaporating with linear ramps halving

the power from step to step varying the time of each section. These are the sections

F1, F2, F3, F4. In figure 6.9 are the absorption images shown at the end of each

section scaled to the same colour scale. The temporal change of the trap depth

U0 and mean frequency f̄ = ω̄/2π of this sequence is shown in figure 6.12(a) and

6.12(b) respectively. For this sequential approach the number of atoms, the mean

temperature and phase space density of the atomic sample are shown in the graphs

of figure 6.13, where the data was taken at the end of each step and uncertainties

are given in one standard deviation of the measured quantity. Using these ramps

the phase space density increases constantly but towards the end of the last ramps

very few atoms are left. Nonetheless the first onset of Bose Einstein condensation

was observed with this approach (see figure 6.14) as the measured temperature was

below the theoretical critical temperature. At this stage we were able to trap up to

40.000 atoms at a calculated T/Tc ∼ 0.5 − 0.6 yet the observed condensate fraction

was less than 5%. Although we saw a bimodal distributions (white circles in figure

6.14) we were not able to fit a bimodal distribution to extract further quantities. We

believe the fragmentation of the BEC to arise from magnetic stray fields separating

the hyperfine states or to be caused by impurities of the polarisation of the trapping

beams causing a lattice like trap. Purification of the BEC could not be achieved as

further reduction of the trapping potential resulted in the loss of the whole cloud.

To make sure that the polarisation of the two traps are linear and orthogonal we put

polarising beam splitters into the beam line of each trap before the beams are focused

into the chamber. By comparison of our data to the data of a similar apparatus in
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M.D. Barretts group in Singapore [87] we came to the conclusion that our evaporation

scheme after the compression in the crossed dipole trap is not efficient. One reason

could be a high three-body loss rate which becomes significant at densities higher than

1014cm−3. We therefore tried another scheme to evaporate faster and more efficiently

which we will discuss in the next section.

6.3.2 Exponential ramps at the final evaporation

Another and faster approach was to replace the linear ramps after the compression

with exponential ramps given by f(t) = A e−t/τ + B, where the constants A and B

are to be determined by the initial and final power of the ramp. Figure 6.15(a) and

6.15(b) show again the evolution of the trap depth and mean frequency of the trap.

The first steps until the compression in the crossed trap remain the same but the two

final steps evolve exponentially in time. Comparing figure (6.13) and figure (6.16) we

see that after the compression the phase space density grows faster and higher than

before using the linear ramps. After the first step of the final evaporation we now

achieve a higher phase space density in a shorter time and have sufficient number

of atoms left. During the final evaporation the cloud undergoes the phase transition

and condenses partially into a BEC (see figure 6.17) containing different spin states

as we will see later. In figure 6.17(a) is shown the averaged optical density of 15

sequential shots to reduce noise caused by fringes. The bimodal distribution becomes

more obvious to see if we integrate the two dimensional absorption profile along one

direction and fit the one dimensional density distribution

n(x) = nth exp

[

−−x2

σ2

]

+ nc max

[

0, 1 − x2

r2c

]2

(6.6)

From those fits we determine approximately 16500 atoms in the condensed fraction

and nearly 5500 atoms in the thermal fraction resulting in a approximately 26%

condensate fraction.
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Figure 6.12: Trap depth U0 and mean frequency f̄ = ω̄/2π during the evaporation



6.3 Evaporating 113

0.
0.

05
0.

55
1.

25
3.

25
3.

65
4.

15
5.

45
7.

45
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
F1 F2 F3 F4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Time HsL

N
at

om
s

10
6

(a) Number of atoms N .

0.
0.

05
0.

55
1.

25
3.

25
3.

65
4.

15
5.

45
7.

45
-50

0

50

100

150

200

250

300
F1 F2 F3 F4

-50

0

50

100

150

200

250

300

Time HsL

T
HΜ

K
L

(b) Temperature T .

0.
0.

05
0.

55
1.

25
3.

25
3.

65
4.

15
5.

45
7.

45

10-5

10-4

0.001

0.01

0.1

F1 F2 F3 F4

10-5

10-4

0.001

0.01

0.1

Time HsL

F

(c) Phase space density Φ.

Figure 6.13: The number of atoms N , the temperature T and phase space density

Φ during the evaporation with linear ramps. We see an increase of the phase space

density throughout the sequence but trap too few atoms at the very end of the

sequence.



114 6 Evaporation to BEC in an ODT

(a) An absorption image on the onset of

Bose-Einstein condensation.

(b) Cross section through the strongest peak

of the absorption image on the left.

Figure 6.14: On the onset of Bose-Einstein condensation we can identify a fragmented

structure in the thermal cloud. A cross section through the highest optical density

clearly shows a bimodal distribution as one would expect.

6.4 Distribution of the mF = 0,±1 states

In chapter 2 we described a model of a single component Bose-Einstein condensate.

Since the optical dipole trap is not spin selective and the trapped atoms occupy the

F=1 manifold with mF = 0,±1 and it is possible that they form in the condensed

phase a so-called spinor condensates [88, 89, 90]. Spinor condensates are described by

a vector order parameter Ψχ, where χ is a vector with 2F + 1 components describing

the individual spins. The two-body interaction is then given by U(r) = δ(r)(c0 +

c2F1 ·F2), where r is the interatomic distance and c2 the spin dependent interaction

parameter. The interaction is ferromagnetic for c2 < 0 and antiferromagnetic for

c2 > 0. Calculations of the ground state of the F=1 spinor condensate have been

done by [88, 91] in the absence of magnetic fields and by [92] in the presence of a

magnetic field. For the thermodynamics of the Bose-Einstein condensation of a spin-1

system not only the total number of atoms N = N− + N0 + N+ is conserved but the
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Figure 6.15: Trap Depth U0 and mean frequency f̄ = ω̄/2π of a faster ramp with

exponential ramps after the compression.
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Figure 6.16: The number of atoms N , the temperature T , and phase space density Φ

during the evaporation using exponential ramps of the power after the compression.
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(a) Three dimensional representation of the optical density.
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Figure 6.17: Two dimensional absorption image of an all-optical BEC and one-

dimensional density profiles of the integrated two-dimensional image along either

direction where the bimodal distribution can be seen.
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Figure 6.18: Variation of the applied

magnetic field strength in time during

the last step of the evaporation.

Dt

DI

t final
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I

magnetisation M = N+ +N− as well [93]. This leads to different chemical potentials

as well and the condensation of the three mF can occur at different temperatures.

During evaporation we do not actively prepare a particular spin state. In a Stern

Gerlach like experiment (see figure 6.19), where we apply a magnetic gradient field

during the time of flight we can spatially separate the mF substates as they are

accelerated due to their magnetic moment. The magnetic force on atom is given by

F = ∇(m · B). Therefore atoms in the state mF = 0 are not accelerated whereas

atoms occupying the states mF = −1 and mF = +1 are accelerated in opposite

directions Following our standard procedure we find that most atoms are condensed

into the mF = −1 state. Applying a magnetic gradient field purifies the spin state

into the mF = 0 state [94]. Similar to the work by Chang we applied a magnetic

gradient field of different strengths for different times (see figure 6.18) during the final

evaporation. For different times and strengths of the field the condensation is occurs

preferentially into one of the substates as shown in figure 6.20. Since no more atoms

are added to the trap during the evaporation and the population remains constant

(see figure 6.21(a)) as it is without applying a magnetic gradient of ∼ 10G/cm, it

means we can transfer almost all atoms into one particular spin state (see figure

6.21(b)). We discovered these dynamics shortly after the first successful formation of

a BEC towards the end of the authors time in the laboratory. A similar observation

was made by M.D. Barrett of this intriguing behaviour.

The origin of the magnetization produced in our all-optical condensates re-
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mains to be determined; however we have developed empirical techniques

to manipulate the magnetization of the cloud. By applying different mag-

netic field gradients during the evaporation process, we can significantly

alter the spin population (see figure 5). in [95]

Although this observation was reported in 2002, the author is as yet unaware of any

further report in the literature of the underlying dynamics. The relative position

of the magnetic and optical trap is unknown and may not overlap well, leading to

difficulties in modelling the dynamics in the combined magnetic and optical potential.

We here note, however, that it is a useful empirical technique to prepare initial desired

spin states in our condensates, and that further study would be of interest.

6.5 Onset and growth of the condensate in the

mF = 0 state

In the previous two sections we saw that we can create a Bose Einstein condensate but

know that it is a mixed spinor condensate. Also we saw that we are able to prepare

a certain pure spin state. So far we have not thought about the condensate fraction

of the BEC itself. One would expect that with further evaporation the temperature

decreases and a fraction of the trapped atoms undergoes a phase transition and con-

dense into a BEC, the absolute ground state of the trap. We stopped the last step

of the evaporation at different points in time which means at different powers and

therefore different trap depths and trapping frequencies. Figure 6.22 shows the onset

and growth of the BEC at different points in time (labels on top on each smaller figure

in units of seconds) of the last evaporation. Just below the critical temperature Tc a

small condensate fraction can be seen on a thermal background. As the evaporation

continues the condensate fraction becomes larger (see figure 6.23) and almost pure

as there is no discernible thermal fraction to be seen. The condensate is elongated

along the direction of ODT2 as it is the slightly weaker trap. The optical density
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no gradient field

during TOF

with gradient field

on during TOF

Standard

procedure

magnetic trap on

during the last step

of the eavporation

Figure 6.19: A mixed spinor condensate (top left) of the mF states can be separated

in a Stern Gerlach like experiment (top right).The mf =-1 state is condensed, and the

onset of condensation can be seen in the mf=0 state. The mf=1 state is still thermal.

All atoms condense into the mF = 0 state (bottom left) if a magnetic gradient is

applied during the last step of the evaporation as there are no other components left

( bottom right)
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Figure 6.20: By applying a different magnetic gradient field (increasing from top to bottom from 1.49 G/cm to 20.26

G/cm) for different durations (increasing from left to right from 0.1 to 0.9s) during the last step of the evaporation one

of three states is preferred for the condensation
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Figure 6.21: Total and relative population of the mF = {−1, 0,+1} states.

is integrated along one direction to fit a one dimensional bimodal distribution1 from

which we determine the number of atoms in the thermal and condensed phase. At

these low powers the estimation of the temperature is highly sensitive to the actual

trap geometry. In these shallow traps we can not neglect the effect of gravity any

more 6.25. The effect of gravity alters the mean frequency, shifts the equilibrium

position along gravity and the effective trapping potential along gravity is smaller as

well. Further we have to consider finite size effects and the weak interaction of the

particles. These two corrections are given by

∆Tf

Tc,0

= −0.73
ωm

ω̄
N−1/3 (6.7)

for the finite size [96] where ω̄ and ωm are the arithmetic and geometric means of the

trapping frequencies. The correction for the weak interaction [97] is given by

∆Tc,int

Tc,0
= −1.33

aS
aho

N−1/6 (6.8)

where aS is the s-wave scattering length and aho the characteristic length aho =
√

h̄/mω of the trap is. Thus the critical temperature Tc is lower than Tc,0 and we

1Taking out the integration along two directions of (4.13)
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Figure 6.22: Onset and growth of the condensate of the mF = 0 state: On top of each figure is the time in s where

the last ramp of the evaporation was truncated. Below the absorption image that shows a spherical thermal cloud an

a growing condensate fraction. The condensate is slightly elongated as the one trap is slightly tighter than the other.

Below the absorption image are plots containing the data of the integrated optical density in one direction (dots), the

bimodal fit (yellow line) and the fitted thermal fraction (red line).
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Figure 6.23: The condensate fraction

as a function of the time when the

last evaporation step was truncated.
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Figure 6.24: Comparison of the cal-

culated temperature based on (4.16)

(red )and based on time of flight mea-

surements (4.15) (blue). Shaded ar-

eas represent a 10% uncertainty on

the temperature

find for the corrected temperatures

Tc,corrected = Tc,0 + ∆Tf + ∆Tint (6.9)

where Tc,0 the critical temperature of 3D harmonic trap is which derived earlier (2.9).

The impact of gravity at the end of the evaporation becomes quite significant for

the measurement of the trapping frequencies and determining temperatures from the

profiles of the atomic cloud. To verify the correctness of the temperature determined

by (4.16) we compared the calculate temperature based on the trapping frequencies

with time of flight measurements. In figure 6.24 we see that the measured temper-

ature from a time of flight measurement (4.15) agrees very well with the estimated

temperature(4.16) from the trap geometry within an uncertainty of 10%. Apart from

the uncertainty of the alignment of the trap we found a dependency of the position

of the focal point of each traps on the RF-power the AOMs are driven. The shift of
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Figure 6.25: The effects of gravity on 6.25(a) the trap minima z0, 6.25(b) trapping

frequencies ω̄ , and 6.25(c) trap depth U0. Here the evaporation has been truncated

in the final steps from 0.7s to 0.9 s in the final evaporation stage.
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Figure 6.26: The position of the trap changes as power is lowered.

this “lensing effect“ [98] for both traps 6.26 is quite significant and can be up to 1mm

but is for both traps smaller than the Rayleigh length and hence the trap frequencies

will not be effected by much. Although taking all these considerations into account

which lowers Tc,0 by 7% the measured fraction of the condensate does not agree with

the expected fraction of the condensate. This surprising result was also observed

earlier by [87, 99, 100]. This discrepancy has been thought to be uncertainties in trap

frequencies at the end of the evaporation [87], or in problems obtaining consistent

condensate fractions from the image fits [100]. It is possible that some deeper devi-
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Figure 6.27: The condensate frac-

tion: Ideal, yellow line calculated

with (2.10), corrected condensate

fraction (red) taking into account the

corrections for finite size effects (6.7)

and for interactions (6.8) of the crit-

ical temperature (2.9) into account

and the measured condensate frac-

tion (blue dots).
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ation from the harmonic approximation, or underlying loss mechanism is apparent.

This might not be surprising, given the relative weakness of the trap in the z direction

due to gravity. We hope further work will explore this discrepancy in more detail.

J.-P. Matikanien found that the harmonic approximation [101] of shallow traps for

Bose-Einstein condensates formed using Gaussian potentials leads to a higher critical

temperature [102]. Due to time constraints the verification of the model is beyond

the scope of this thesis. In order to perform any experiment on cold atoms the life

time needs to be sufficient long which means a life time on the order of a few seconds.

In figure 6.28 is the 1/e life of our BEC and an exponential fit shown and the decay

constant from the fit is (8.6±0.7)s. Therefore we expect to be able to investigate the

superfluid properties of a BEC in a toroidal trap [103].

6.6 Summary

Here in the chapter we described the loading of 87Rb and evaporation in an precisely

controlled (see section 4.5) optical dipole trap to quantum degeneracy in a dilute

atomic gas. We achieved almost pure condensates with up to 20000 atoms in the

condensed phase purely in the mF = 0 state by applying a magnetic gradient during
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Figure 6.28: 1/e life time (dots data,

error bars are one standard devia-

tion) of the BEC: the decay constant

is (8.6±0.7)s. The shaded area shows

the uncertainty of the fit.

the final evaporation. A discrepancy between the expected condensate fraction and

measured condensate fraction was observed. Future work will be to optimise the

evaporation process further to produce larger condensates, and to explore the nature

of the difference in the expected and observed condensate fraction.
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7 Towards a scanning dipole trap

In this chapter we discuss the design of a fast scanning laser beam and its applications.

The dimension of the confiment of BECs [104] and shape of potentials such as double

wells [105] or optical lattices [106] for BECs in atom optics have exhibited interesting

phenomena. Optical dipole traps can play a very important role in experiments

to apply potentials of various shapes and dimensionality. Often these potentials

are combined traps of magnetic fields and optical dipole traps or optical lattices.

One problem arising in combined traps is the relative motion of the traps caused by

mechanical vibrations. In our experiment we use a trap design that requires only one

single beam to apply various potentials or even two-dimensional lattices of a finite

number of lattice sites.

7.1 General considerations and design

In optical tweezers experiments commonly 2D AOMs are used to manipulate the

position of macroscopic particles. Similar to this technique we use a tightly focused

red detuned laser beam to manipulate the potential for neutral atoms in the horizontal

plane.

Additional to the frequency shift of a laser beam passing through an AOM the

laser beam is also deflected by a small angle which is proportional to the frequency

applied to the AOM. Conservation of momentum gives us kd = ki±ka, where kd is the

wave vector of the deflected beam and ki and ka are the wave vectors of the incident

beam and the acoustic wave. Within the bandwidth of the AOM the deflection angle
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is given by Θ = λν/v, where λ is the wavelength of the laser beam and ν and v

are the frequency and velocity of the sound wave. For two-dimensional scanning we

use two AOMs mounted orthogonally to each other, such the first AOM deflects the

beam in one direction and the second one perpendicular to the direction of the first

deflection. Now we change the applied frequencies in time and we can write with

the double deflected beam any arbitrary pattern [35]. For the dynamic control of

a rapidly scanning beam trap, figure 7.1 shows the general concept of the scanning

beam trap, a number of technical considerations need to be addressed. To control and

stabilise the power of the laser beam we use a noise eater as we discussed in section

4.5. In our experiment we use digital frequency sources to avoid complications arising

from the creation of side bands if analogue sources were used. The second channel is

controlled with a fast forward loop. Some power of the scanned beam is detected on

a photo detector and recorded. The recorded signal is then inverted and combined

with the control signal to correct systematic imperfections. In the diffraction limit the

smallest possible structure that could be resolved measures 2.2µm for a wavelength of

1064nm. In order to achieve this resolution we designed and optimised a set of lenses

that are commercially available. Simulations in Oslo showed that this resolution can

be achieved but one also has to be very careful in adjusting the lenses. According to

the simulations we are able to scan an area of 200 ∗ 200µm2 without any distortion

of the focal plane. Even outside this area the distortion is smaller than 10−4.

7.1.1 Properties of a toroidal potential

A toroidal potential well can be produced by scanning a focused laser beam in a

circle. The toroidal potential confines the atoms well in the transversal direction but

not along the beam direction. The strength of the confinement and also the depth

are determined by the time averaged optical dipole force applied to the atoms. Let us

assume we scan a ring of radius R with a focused laser beam of power P and a waist

of w0 in the focal plane. From a simple calculation we find the averaged intensity to
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Figure 7.1: First the noise eater stabilises the power of the laser beam. The two-

dimensional AOM deflects the stabilised laser beam. Finally the scanned beam is

magnified and focused.

be [35]

I(r) =
4P

w2
0

exp

(

−2(r2 − R2)

w2
0

)

J0(ξ) (7.1)

with the modified zeroth-order Bessel function J0(ξ) as a function of ξ = 4Rr/w2
0, R

is the radius of the ring, r the spatial position and w0 the waist of the scanned beam

at the focus. Substituting equation 7.1 into equation 3.18 we find the optical dipole

potential of a toroidal trap. A plot of such a toroidal potential is given in figure 7.2.

The depth in all plots of the ring is given in units of T = E/kB. In figure 7.2(a)

is shown the toroidal potential in the horizontal plane at the focus. The potential

through the centre of the ring along one direction is shown figure 7.2(b). The potential

in the vertical plane through the centre of the trap is shown on figure 7.2(c). Again

note the different scale on the r and z axes resulting in a stronger confinement in the

horizontal plane than in the vertical plane along the z direction. The minimum of the

trap is at r = R and the atoms of mass m oscillate in the transverse direction with a

frequency of

ωr = 4

√

−κPe−ρ [8a2 (J1 (ρ) − J0 (ρ)) + w2
0 (J0 (ρ) + J1 (ρ))]

mw6
0

(7.2)



132 7 Towards a scanning dipole trap

with ρ = 4a2

w2
0

, U0 = −κP and Jn the n-th order modified Bessel function. In figure

7.3(a) is a plot showing the trapping frequency as a function of the scanned radius

R. The trapping frequency decreases rapidly for radii smaller than the waist of the

beam, reaches a local minimum and decreases slowly with larger radii. For radii

smaller than R ≈ 0.6 w0 the potential remains a single well potential that becomes

wider. When scanning radii larger than R ≈ 0.6 w0 a double well structure emerges

with lower trapping frequencies.
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Figure 7.2: Profiles of a toroidal potential for R0 = 20µm, w0 = 15µm, P = 1mW

and λ = 1064nm.



134 7 Towards a scanning dipole trap

0. 0.25 0.5 0.75 1. 1.25 1.5 1.75 2. 2.25 2.5 2.75 3.

0

100

200

300

400

500

R�w0

Ω
ra

d
�2
Π
HH

zL

(a) The trapping frequency of a toroidal trap as a function of the scanned radius

R with laser beam of a power of 1mW, a waist of w0 = 15µm and a wavelength

of λ = 1064nm.
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Figure 7.3: The trapping frequency as a function of the radius is shown in 7.3(a)

while b-g shows cross sections through the centre of the potential well for the same

parameters.
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7.2 Bosons in toroidal traps a summary of some

theory and outlook

Toroidal traps are of particular interest on account of their periodic boundary condi-

tions. Among the tremendous amount of theoretical work on BECs in toroidal traps

we will look into some of the theory and how we could apply some experiments that

could verify theoretical predictions. A very important parameter that determines the

dynamics of a BEC is the ratio of the scattering length over the oscillator length

(compare 2.17). By changing these parameters the interaction becomes either at-

tractive or repulsive but also determines the dimensionality of the system. Also the

number of particles and the temperature are important parameters that determine

the dynamics. Let us assume a toroidal potential of radius R0 is given by

V (r, z) =
λ

4
(r2 − R2

0)
2 +

mω2
z

z2
(7.3)

s where λ is in units of 0.477peV/µm4. In order to determine the chemical po-

tential and the wave function we would have to solve the GP equation. We will

continue the discussion in the Thomas-Fermi limit in order to deduce an expres-

sion for the wave function and the chemical potential. The Thomas-Fermi approx-

imation holds if N ≫ (h̄2/2m)(λR2
0 + mω2

z/2)/µ2
0 with the bare chemical potential

µ0 = (2/π2)(λ/4)1/4(mω2
z/2)1/4g1/2. The solution of the wave function in the Thomas-

Fermi limit is given by

Ψ(r) =

(
1

gN
[µ− V0(r)]

)1/2

Θ[µ− V0(r)]. (7.4)

The dimensionality is determined by comparison of the chemical potential with the

oscillator energies, thus we summarise in table 7.1
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dimensionality condition chemical potential

1D µ < h̄ωρ µ1D = h̄ω Na
πR0

2D h̄ωρ < µ < h̄ωz µ2D = h̄ω
(

ωρ

ωz

)1/6 (
3Na

4
√
πR0

)2/3

3D µ > h̄ωz µ3D = h̄ω
√

2Na
πR0

Table 7.1: The dimensionality of the toroidal potential depends on the relation of the

chemical potential and the oscillator energy. Where ω is the geometric mean of the

transverse and axial trapping frequencies ωz and ωρ.

7.3 Experiments with atoms in a scanning dipole

trap

A major advantage of the fast scanning dipole trap is the dynamic control over the

trapping potential, and versatile applications which we briefly discuss here.

Atom interferometry

Interferometry is an important technique in physics to detect the phase shift between

two paths of an interferometer. With a Sagnac interferometer one can measure the

rate of rotation by the induced phase shift, which is proportional to the enclosed

area of the paths and inversely proportional to wavelength of photons and massive

particles given by

∆Φ =
4πΩ ·A

λv
. (7.5)

Here lambda is the wavelength of the particle, which is the de Broglie wavelength

λdb = h/mv for a massive particle, and v the velocity of the particle. Assuming

an atom- and light-based interferometer of the same enclosed area we find the in-

trinsic sensitivity is larger by a factor 1011 for rubidium atoms compared to visible



7.3 Experiments with atoms in a scanning dipole trap 137

light. Better beamsplitters for light than for atoms and highly reflective mirrors

lets one easier increase the enclosed area for a light-based interferometer than for an

atom-interferometer and the intrinsic sensitivity advantage of an atom-interferometer

becomes smaller. However, we are able to scan toroidal time averaged potentials of

radii up to 150µm. In such a trap the sensitivity would be greater by a factor 24 · 103

compared to a light-based interferometer of an area of 1m2.

Finite lattices

Optical lattices created by tightly focused and retro-reflected laser beams form a

lattice (along the direction of the propagation) with a spacing between lattice sites of

half the wave length of the focusing laser. In such an optical lattice one can neither

change the spacing between individual lattice sites nor the on-site lattice depth. Here

again the dynamic control over the on-site power and position at the same time

allows us to scan finite lattices with individual control of the on-site lattice depth.

An interesting experiment would be to begin with spinpolarised BECs on each lattice

and to observe the spontaneous magnetisation as the system evolves in time.

Controlled vortex creation

In contrast to the spontaneous formation of vortices [107] the simulations performed

by J.Butcher [108] show that it is possible to create vortex states in a controlled way

in a scanning beam trap. In these simulations we initially trap a BEC in a single beam

trap and start scanning a finite lattice of four sites. Although the number on each site

is statistically determined they all have the same phase. By increasing the depth on

individual lattice sites we can imprint a known phase onto the wave function on each

lattice sites. If imprinting the phase difference such it is a multiple of 2π between the

first and the last lattice site, we would expect from the free expanding BECs to form

a vortex state when they interfere.
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8 Conclusions and outlook

The author’s work reported in this thesis was aimed to build an apparatus to create

an all optical BEC. The creation of an all-optical 87Rb BEC was realised in a crossed

optical dipole trap at a wavelength of λ = 1064nm. The trapping of neutral atoms

in an optical dipole trap is spin independent and a mixed spinor condensate among

the F = 1 manifold with mF = {−1, 0,+1} is formed. The work confirmed an earlier

report that a particular spin state can be prepared by applying a magnetic gradi-

ent field during the evaporation. Yet the experiments on Bose-Einstein condensation

remain challenging as many different components of such experiments have to work

precisely together.

This thesis is mainly concerned with experimental details on the trapping of 87Rb atoms

from a hot vapour and cooling in a magneto optical trap and further evaporation to

quantum degeneracy in a crossed optical dipole trap with accurate control of the

power in both beams via a feedback loop. A major improvement made during the

development of the system was replacing the free space coupled MOT with optical

fibres. From then on we were able to quickly diagnose and if necessary to optimise

the MOT. Currently we load from approximately 95 million atoms after the temporal

dark MOT up to 5 million atoms into the optical dipole trap to start the evaporation

with. The loading of the MOT could be further improved by building a 2D MOT

system to load a 3D MOT separated by an aperture. The loading will then be on the

order of a few seconds, decreasing the duty cycle of the experiment further with longer

life times of the trapped atoms. With our current procedure we can now routinely
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create almost pure Bose-Einstein condensates purely in the mF = 0 state with nearly

7000 atoms in the condensed fraction. This was successfully demonstrated just a few

weeks before submission of the thesis was due.

The number of all optical BEC experiments has grown over the years, yet there are

not as many as their magnetic counterparts. Also the modelling of the dynamics

of the evaporation is well established for magnetic traps but not so well for optical

traps. We found that although the standard theory agreed very well with our mea-

surements of the MOT, it did not account well for the dynamics of the evaporation

process which led to condensation. Another interesting and useful phenomenon was

the formalism of condensed pure spin states when the evaporation was carried out

in a magnetic field gradient. Such behaviours have been reported previously and it

is hoped that this confirmation will spark interest in explaining and modelling the

effect. This already leaves plenty of research for the future. Since the formation of an

all optical BEC works reliably we have opened the door to investigate Bose-Einstein

condensates in arbitrary potentials using a time averaged scanning dipole trap.



Bibliography

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.

Cornell. Observation of bose-einstein condensation in a dilute atomic vapor.

Science, 269(5221):198–201, 1995.

[2] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee,

D. M. Kurn, and W. Ketterle. Bose-einstein condensation in a gas of sodium

atoms. Phys. Rev. Lett., 75(22):3969–3973, Nov 1995.

[3] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. The-

ory of bose-einstein condensation in trapped gases. Rev. Mod. Phys., 71(3):463–

512, Apr 1999.

[4] Anthony J. Leggett. Bose-einstein condensation in the alkali gases: Some fun-

damental concepts. Rev. Mod. Phys., 73(2):307–356, Apr 2001.

[5] D. S. Durfee W. Ketterle and D. M. Stamper-Kurn. Making, probing and un-

derstanding bose-einstein condensates. Proceedings of the International School

of Physics Enrico Fermi, pages pp. 67–176, 1999.

[6] Bose. Plancks gesetz und lichtquantenhypothese. Zeitschrift fuer Physik A

Hadrons and Nuclei, 26(1):178–181, 1924.

[7] Zur quantentheorie des idealen gases. Sitzungsber. Preuss. Akad. Wiss., Bericht

3:18, 1925.

[8] M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn,

141



142 BIBLIOGRAPHY

and W. Ketterle. Observation of interference between two bose condensates.

Science, 275(5300):637–641, 1997.

[9] P. Kapitza. Viscosity of liquid helium below the λ-point. Nature, 141:74–74,

1938.

[10] John D. Reppy and David Depatie. Persistent currents in superfluid helium.

Phys. Rev. Lett., 12(8):187–189, Feb 1964.

[11] F. London. On the bose-einstein condensation. Phys. Rev., 54(11):947–954,

Dec 1938.

[12] On the theory of superfluidity. J. Phys. (USSR), 11:23, 1947.

[13] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle. Observation of

vortex lattices in bose-einstein condensates. Science, 292(5516):476–479, 2001.

[14] B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell. Vortex pre-

cession in bose-einstein condensates: Observations with filled and empty cores.

Phys. Rev. Lett., 85(14):2857–2860, Oct 2000.

[15] E. Hodby, G. Hechenblaikner, S. A. Hopkins, O. M. Maragò, and C. J. Foot.

Vortex nucleation in bose-einstein condensates in an oblate, purely magnetic

potential. Phys. Rev. Lett., 88(1):010405, Dec 2001.

[16] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Vortex formation in

a stirred bose-einstein condensate. Phys. Rev. Lett., 84(5):806–809, Jan 2000.

[17] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman,

and E. A. Cornell. Vortices in a bose-einstein condensate. Phys. Rev. Lett.,

83(13):2498–2501, Sep 1999.

[18] R. Onofrio, C. Raman, J. M. Vogels, J. R. Abo-Shaeer, A. P. Chikkatur, and

W. Ketterle. Observation of superfluid flow in a bose-einstein condensed gas.

Phys. Rev. Lett., 85(11):2228–2231, Sep 2000.



BIBLIOGRAPHY 143
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A Cameras

For different purposes we have a camera from Prosillica (EC1380) and another one

from Prinecton Instruments (Pixis). We use the camera from Prosillica to continu-

ously monitor the MOT and to take absorption images in the horizontal plane. The

camera from Princeton is used to take absorption images along gravity. To take pic-

tures with the camera from Princeton the readily available software WinView was

used. To operate the camera from Prosillica a graphical user interface was written in

LabView which we will briefly introduce in the following sections.

A.1 Prosillica camera

A.1.1 Continuous operation

In figure A.1(a) and A.1(b) are screenshots shown of a program written by the author

in LabView to monitor the fluorescent light of the MOT continuously with the camera

from Prosillica camera. On the front panel the user will see in the upper left corner the

image of the MOT and in the two columns on the right Gaussian fits and the widths

through the maximum of the MOT along the transverse directions. The transverse

lines through maximum can be highlighted by the user turning on or off the button

’Show Max’. The user can choose a region of interest of the chip with the sliders

on the lower left on the camera, input the properties of the lenses of the imaging

system and the pixel size of the camera. The exposure time and also the time steps

from frame to frame can be chosen by the user. The lower right corner shows the
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amplitude of the total intensity on the chip which can be saved into a file by starting

the program. On the block diagram A.1(b) the flow and processing of the image is

shown. Before the program enters the while loop the camera is initialised and a file

dialogue box opens to save the total intensity into a *.txt-file. The program reads

out continuously the image of the camera and sends it to another self written sub

program where the actual fitting of the Gaussian profiles is calculated.

A.1.2 Taking absorption images

This self written program by the author in LabView triggers the camera to take three

images, to display a preview of the absorption image and the line profiles through the

maximum of intensity along the transverse direction. On the front panel the three

images of the series are displayed on the left side. In the upper box the user can choose

an area of interest of the chip and also the the exposure time of the chip. The graph

in the center shows the calculated preview of the absorption image and on the top and

left are graphs that show the line profiles along the transverse directions through the

maximum of intensity. On the far right is a graph that shows the absorption image of

the previous run. The user can save the images into a folder by switching the button

’Save Images’ on or off. The three images are saved into a chosen folder with a format

that includes the date, the number of the run and the extension atom, noatoms and

background, e.g. 01 01 1900 000001 atoms.tif, 01 01 1900 000001 noatoms.tif and

01 01 1900 000001 background.tif. The program evaluates two parallel while loops

as can be seen on the block diagram A.2(b). The first while loop constantly reads

the level of a digital input. For a low level the variable ’Taking Images’ is set to

’false’ and is forwarded into the second while loop. The false case means that the

camera will not take images. For a high level on the digital input the variable ’Taking

Images’ is set to true and forwarded to the second while loop. In the true case, in

the second while loop as shown in A.2(b) the first sub.vi initialises the camera and

takes three images when the camera is triggered. The following sub.vi calculates the
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(a) On the front panel the continuous image of the fluorescent light of the MOT,

upper left, the Gaussian fits right hand, the region of interest, lower left,

properties of the imaging system and the total intensity lower right.

(b) The source code of the program. For a closer description please refer to the

text.

Figure A.1: Front panel, upper figure, and block diagram, lower figure, of the program

to monitor the MOT continuously.
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(a)

(b)

Figure A.2: Front panel, upper figure, and block diagram, lower figure, of the program

to take absorption images with the Prosillica camera.
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optical density with the three pictures as described in section 4.6.1. The following

two sub.vis fit a Gaussian profile through the maximum of the optical density along

the transverse directions and calculate the number of atoms according to equation

4.6.

A.2 Princeton Instruments camera

In our experiment we use a CCD camera from Princeton Instruments (Pixis). The

properties of the camera like exposure time, triggering and the destination where to

save the images are set with the manufacture’s software WinView.
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B Analysis

Quite a significant amount of time was spent on developing scripts in Mathematica

to display and analyse the absorption images. We briefly explain the following script

that was used to analyse the thermal fraction in the absorption images that were

taken in the crossed dipole trap at the end of the evaporation cycle. On the front

panel in Mathematica the user executes the function

CrossedTrapRegulated[image#,top,bottom,left,right,p1,p2,TOF]

was written to calculate the optical density (see section: 4.6.1) and to calculate

quantities. The first variable is the number of the image to be analysed. The following

four determine the region of interest of the image. The variables p1 and p2 are

the powers of the beams of the optical dipole traps ODT1 and ODT2 in units of

a voltage according to a calibration. The last variable TOF is the time of flight

which is necessary to calculate the temperature of the atoms. The script starts

testing the existence of the file and the length of the multipage .TIF to be read.

If both tests are true the three images A, R and D are read into the variables

atom, noatom and back. Each of these variables is a matrix with the dimension of the

area of the CCD chip (or set region of interest set in WinView). A subarray given

by choosing the boundaries (top, bottom,left, right) is selected and used to calculate

the optical density of the region of interest (lines 37-67). To allow for noise in the

image we determine the average profile in two directions (lines 87-88) and determine

the position of the maximum along those directions (line 90-91). A two-dimensional

Gaussian function (line 97) is then fitted (line99-102) to the two-dimensional data set

159
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(line 93). The fitted parameters (line 106-111) are then used for various calculations.

For visualisation a plot of the optical density, fitted cross sections and all quantities

are summarised in the variable ”plotsnnumbers” which is displayed on the front panel

in Mathematica and also saved into the working directory as a .gif-file (see figure )

along with text files .dat and .txt that contain all calculated quantities of each single

image.

1 CrossedTrapRegulated [ p ic0 , top , bottom , l e f t , r i g h t , p1 , p2 ,

2 TOF ] :=

3 Module [{ picnum = pic0 , b = bottom , t = top , l = l e f t , r = r i ght ,

4 p f i r s t = p1 , psecond = p2 , time = TOF} ,
5 Clear [ data ] ;

6 (∗ r ead ing the rawdata images ∗)
7

8 p i c co = picnum ;

9 img f i l e = ” image” <> ToString [ picnum ] <> ” .TIF ” ;

10 (∗ t e s t i n g the ex i s t a n c e o f the s e l e c t e d image f i l e ∗)
11

12 I f [ FileType [ img f i l e ] === Fi le ,

13 (∗ import ing the s e l e c t e d image f i l e ∗)
14

15 img = Import [ ” image” <> ToString [ picnum ] <> ” .TIF” , {”Data ” } ] ;
16 (∗ t e s t i n g the dimension o f the s e l c e t e d ima g e f i l e .

17 1 . f l o u r e s c en c e , 2 . atoms , 3 . without atoms , 4 . background => 4∗)
18

19 I f [ Dimensions [ img ] [ [ 1 ] ] == 4 ,

20

21 atom = img [ [ 2 ] ] ;

22 noatom = img [ [ 3 ] ] ;

23 back = img [ [ 4 ] ] ;

24 (∗
25 Se t t ing a r eg i on o f i n t e r e s t and t e s t i n g the boundar ies ,

26 i f they are exceeded they are s e t to i t s max/min de f au l t va lue

27 ∗)
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Figure B.1: Example of the display on the the front panel in Mathematica of an analysed image.
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28 t = I f [ t < b && t > 0 , t , 1 ] ;

29 b = I f [ b > t && b <= Dimensions [ img ] [ [ 2 ] ] , b ,

30 Dimensions [ img ] [ [ 2 ] ] ] ;

31 l = I f [ l < r && l > 0 , l , 1 ] ;

32 r = I f [ r > l && r <= Dimensions [ img ] [ [ 3 ] ] , r ,

33 Dimensions [ img ] [ [ 3 ] ] ] ;

34

35 (∗ Extract ing the r eg i on o f i n t e r e s t ∗)
36

37 newatom = atom [ [ t ; ; b , l ; ; r ] ] ;

38 newnoatom = noatom [ [ t ; ; b , l ; ; r ] ] ;

39 newback = back [ [ t ; ; b , l ; ; r ] ] ;

40

41 (∗width and he ight o f the p i c tu r e in p i x e l ∗)
42

43 width = r − l ;

44 he ight = b − t ;

45 xrange = width ;

46 yrange = he ight ;

47 (∗ es t imate o f the f o r power f l u c t u a t i o n ∗)
48

49 norm =

50 Total [ ( atom [ [ 8 0 0 ; ; 850 , 1 ; ; 5 0 ] ] −
51 back [ [ 8 0 0 ; ; 850 , 1 ; ; 5 0 ] ] ) / ( noatom [ [ 8 0 0 ; ; 850 ,

52 1 ; ; 5 0 ] ] − back [ [ 8 0 0 ; ; 850 , 1 ; ; 5 0 ] ] ) , 2 ]/2500 // N;

53 (∗ c a l c u l a t i n g the o p t i c a l dens i ty ∗)
54 (∗
55 t e s t i n g the nominator and denominator f o r p i x e l va lue s equa l or \
56 sma l l e r than zero ∗)
57

58 nom = (newatom − newback) / . x / ; x <= 0 −> 0 . ;

59 denom = (newnoatom − newback ) / . x / ; x <= 0 −> 1 . ;

60 f r a c = nom/denom;

61 (∗ c a l c u l a t i n g the o p t i c a l dens i ty ,
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62 the MedianFi l te r smoothes the images i f wanted .

63 A g r e a t e r smoothing va lue i n c r e a s e s the computational time . ∗)
64 \
65 (∗OD=−Log [ f r a c /norm ] ; ∗ )
66

67 OD = Image [ MedianFi l te r [−Log [ f r a c / 1 . ] , 0 ] ] [ [ 1 ] ] ;

68 dims = Dimensions [OD] ;

69

70 (∗ s ea r ch ing f o r the maximum o f the o p t i c a l dens i ty ,

71 1 automat ica l ly , 2 averag ing over a l l l i n e s in x and y d i r e c t i o n ∗)
72

73 ODMax = Max[OD] ;

74 ODMin = Min [OD] ;

75 posmax = Pos i t i on [OD, ODMax ] ;

76 xmax = posmax [ [ 1 , 2 ] ] ;

77 ymax = posmax [ [ 1 , 1 ] ] ;

78

79 xmean = Mean [ Table [OD[ [ i , Al l ] ] , { i , dims [ [ 1 ] ] } ] ] ;
80 ymean = Mean [ Table [OD[ [ All , i ] ] , { i , dims [ [ 2 ] ] } ] ] ;
81

82 MaxX = Pos i t i on [ xmean , Max[ xmean ] ] [ [ 1 , 1 ] ] ;

83 MaxY = Pos i t i on [ ymean , Max[ ymean ] ] [ [ 1 , 1 ] ] ;

84

85 dims = Dimensions [OD] ;

86

87 xmean = Mean [ Table [OD[ [ i , Al l ] ] , { i , dims [ [ 1 ] ] } ] ] ;
88 ymean = Mean [ Table [OD[ [ All , i ] ] , { i , dims [ [ 2 ] ] } ] ] ;
89

90 MaxX = Pos i t i on [ xmean , Max[ xmean ] ] [ [ 1 , 1 ] ] ;

91 MaxY = Pos i t i on [ ymean , Max[ ymean ] ] [ [ 1 , 1 ] ] ;

92

93 NewODdata =

94 Flatten [ Table [{ j , i , OD[ [ i , j ] ] } , { i , dims [ [ 1 ] ] } , { j ,
95 dims [ [ 2 ] ] } ] , {2 , 1 } ] ;
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96

97 Gauss2D = A∗Exp[−((( x − x0 ))ˆ2/wxˆ2 + ( ( ( y − y0 ))ˆ2/wyˆ 2 ) ) ] + o f f ;

98

99 Gauss2Dfit =

100 Nonl inearModelFit [

101 NewODdata , {Gauss2D} , {A, {x0 , MaxX} , {y0 , MaxY} , wx , wy ,

102 o f f } , {x , y} , MaxIterat ions −> 1 0 0 0 ] ;

103

104 GaussPara = Gauss2Dfit [ ” BestFitParameters ” ] ;

105

106 peak = GaussPara [ [ 1 , 2 ] ] ;

107 xOFF = GaussPara [ [ 2 , 2 ] ] ;

108 yOFF = GaussPara [ [ 3 , 2 ] ] ;

109 xwidth = GaussPara [ [ 4 , 2 ] ] ;

110 ywidth = GaussPara [ [ 5 , 2 ] ] ;

111 OFF = GaussPara [ [ 6 , 2 ] ] ;

112

113 FitPlotX = Plot [ Gauss2Dfit [ x , Round [yOFF ] ] , {x , 0 , dims [ [ 2 ] ] } ,

114 PlotRange −> {All , {1 .2 Min [OD] , 1 . 2 Max[OD]} } ,

115 P lo tSty l e −> {Dashed , Thick , Black } ,
116 Frame −> True ,

117 FrameStyle −>
118 D i r e c t i v e [{{ FontSize −> 12 , FontFamily −> ”He lve t i ca ” ,

119 Thickness [ 0 . 0 0 5 ] } , {FontSize −> 12 ,

120 FontFamily −> ”He lve t i ca ” , Thickness [ 0 . 0 0 5 ] } } ] ,
121 FrameLabel −> {{”OD” , None } , {” p i x e l ” , ”x ( \ [Mu]m )”}} ,
122 Epi log −> {Po intS i z e [ 0 . 0 1 ] , Gray ,

123 Point [ Table [{ i , OD[ [ Round [yOFF] , i ] ] } , { i , dims [ [ 2 ] ] } ] ] } ] ;
124

125 FitPlotY = Plot [ Gauss2Dfit [ Round [xOFF ] , y ] , {y , 0 , dims [ [ 1 ] ] } ,

126 PlotRange −> {All , {1 .2 Min [OD] , 1 . 2 Max[OD]} } ,

127 P lo tSty l e −> {Dashed , Thick , Black } ,
128 Frame −> True ,

129 FrameStyle −>
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130 D i r e c t i v e [{{ FontSize −> 12 , FontFamily −> ”He lve t i ca ” ,

131 Thickness [ 0 . 0 0 5 ] } , {FontSize −> 12 ,

132 FontFamily −> ”He lve t i ca ” , Thickness [ 0 . 0 0 5 ] } } ] ,
133 FrameLabel −> {{”OD” , None } , {” p i x e l ” , ”y ( \ [Mu]m )”}} ,
134 Epi log −> {Gray ,

135 Point [ Table [{ i , OD[ [ i , Round [xOFF ] ] ] } , { i , dims [ [ 1 ] ] } ] ] } ] ;
136

137

138 (∗ absorpt ion p i c tu r e o f the r eag i on o f i n t e r e s t ∗)
139

140 r o i = Matr ixPlot [OD, ColorFunction −> (Hue [ 1 − #] &) ,

141 (∗AspectRatio−>Dimensions [OD] [ [ 1 ] ] / Dimensions [OD] [ [ 2 ] ] ,

142 ImageSize−>{{100,Dimensions [OD] [ [ 2 ] ] } , { 2 yrange , Dimensions [OD] [ [

143 1 ] ] } } , ∗ )
144

145 FrameTicks −> {{Automatic ,

146 Table [{ i , i + t } , { i , 0 , Dimensions [OD] [ [ 1 ] ] ,

147 50} ]} , {Automatic ,

148 Table [{ i , i + l } , { i , 0 , Dimensions [OD] [ [ 2 ] ] , 5 0 } ] } } ] ;
149

150

151 (∗ Ca lcu la t ing the number o f atoms from the absorpt ion p i c tu r e by \
152 summing up a l l p i x e l s mu l t i p l i e d by the area o f a p i x e l over the \
153 resonant c r o s s s e c t i o n ∗)
154

155 atoms = Total [OD, 2 ]∗ ( p i x e l l e ng th )ˆ2/ sigma0 // N;

156 f i t a toms = Pi∗peak/ sigma0 xwidth ywidth ∗ p i x e l l e ng th ˆ2 ;

157

158 wXlength = xwidth∗ p i x e l l e ng th ;

159 wYlength = ywidth∗ p i x e l l e ng th ;

160 atomdens ity = f i ta toms /(Pi )ˆ (3/2)/ wYlength/wXlength/wYlength ;

161

162 newdens =

163 f i t a toms ∗( Pi∗w0∗Sqrt [ 2 ] / lambdaL)ˆ2/( wXlength )ˆ3/(2 Pi ) ˆ ( 3 / 2 ) ;
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164

165 (∗ c a l c u l a t i n g the number o f atoms by i n t e g r a t i n g a 2D Gauss \
166 with peak amplitude o f the f i t t e d o p t i c a l dens i ty and width over 4 \
167 times the width o f the c loud in each d i r e c t i o n ∗)
168

169 thermalc loud =

170 Table [ Gauss2D / . {A −> peak , x0 −> xOFF, y0 −> yOFF,

171 wx −> xwidth , wy −> ywidth , o f f −> OFF, x −> j , y −> i } , { i ,
172 1 , dims [ [ 1 ] ] } , { j , 1 , dims [ [ 2 ] ] } ] ;
173

174 r e s i dua l c l o ud = Matr ixPlot [OD − thermalc loud ,

175 ColorFunction −> (Hue [ 1 − #] &) ,

176 (∗AspectRatio−>Dimensions [OD] [ [ 1 ] ] / Dimensions [OD] [ [ 2 ] ] ,

177 ImageSize−>{{100,Dimensions [OD] [ [ 2 ] ] } , { 2 yrange , Dimensions [OD] [ [

178 1 ] ] } } , ∗ )
179

180 FrameTicks −> {{Automatic ,

181 Table [{ i , i + t } , { i , 0 , Dimensions [OD] [ [ 1 ] ] ,

182 50} ]} , {Automatic ,

183 Table [{ i , i + l } , { i , 0 , Dimensions [OD] [ [ 2 ] ] , 5 0 } ] } } ] ;
184 (∗N2DFit=In t e g r a t e [ t e s t [ x , y ] / . {A−>ODFIT, x0−>0,y0−>0,sx−>wXpixel ,

185 sy−>wYpixel } ,{x,−4∗ wXpixel , 4∗wXpixel } ,{y,−4∗wYpixel , 4∗wYpixel } ]∗
186 p i x e l l e ng th ˆ2/ sigma0 ; ∗ )
187

188 O1 = ODT1 / . x −> p f i r s t ;

189 O2 = ODT2 / . x −> psecond ;

190

191

192 (∗ c a cu l a t i n g the trap parameters ∗)
193

194 U = Pi∗ l i g h t s p e ed ˆ2∗
195 GammaD2/omegaD2ˆ3 ∗ ( ( 2 . / ( omegaL − omegaD2) ) + ( 1 . / ( omegaL −
196 omegaD1 ) ) ) / 2 ;

197 I01 = 2∗O1/Pi/w1ˆ2 ;
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198 I02 = 2∗O2/Pi/w2ˆ2 ;

199

200 TrapDepth = U (2 O1 /Pi/wmainˆ2 + 2 O2/Pi/wauxˆ2)/ kb ;

201

202 (∗ t rapping f r e q u e n c i e s ∗)
203

204 omx = Sqrt [−8∗U/Pi/mRb (O2/w2ˆ4 + O1/2/w1ˆ2/zR1 ˆ 2 ) ] ;

205 omy = Sqrt [−8∗U/Pi/mRb (O1/w1ˆ4 + O2/2/w2ˆ2/zR2 ˆ 2 ) ] ;

206 omz = Sqrt [−8 U/Pi/mRb (O1/w1ˆ4 + O2/w2 ˆ 4 ) ] ;

207

208 meanomega = (omx∗omy∗omz ) ˆ ( 1 / 3 ) ;

209

210

211 Tx = mRb∗omxˆ2∗wXlengthˆ2/kb/(1 + omxˆ2∗ time ˆ2 )/2 ;

212 Ty = mRb∗omyˆ2∗wYlengthˆ2/kb/(1 + omyˆ2∗ time ˆ2 )/2 ;

213

214 Tc = hbar∗meanomega/kb ( f i t a toms /Zeta [ 3 ] ) ˆ ( 1 / 3 ) ;

215

216 Tmean = (Tyˆ2∗Tx) ˆ ( 1 / 3 ) ;
217

218 psdx = f i ta toms ( hbar∗meanomega/kb/Tx)ˆ 3 ;

219 psdy = f i ta toms ( hbar∗meanomega/kb/Ty)ˆ 3 ;

220

221 psdmean = f i ta toms ( hbar∗meanomega/kb/(Tyˆ2∗Tx)ˆ ( 1 / 3 ) ) ˆ 3 ;
222

223

224 peakdens = f i ta toms (mRb/2/Pi/kb/Tmean)ˆ (3/2 ) meanomega ˆ3 ;

225 gammael = f i ta toms ∗8∗ Sqrt [ 2 ] ∗ asRbˆ2∗mRb∗meanomegaˆ3/Pi/kb/Tmean ;

226 twobodyco l l i s i on = −f i t a toms ∗gammael∗Abs [ TrapDepth/Tmean ]∗
227 Exp[−Abs [ TrapDepth/Tmean ] ] ;

228 Vef f = (2 Pi kb Tmean/mRb)ˆ(3/2)/meanomega ˆ3 ;

229 thr e ebody lo s s = Gamma3BncRb Vef f peakdensˆ3 /100ˆ6 ;

230 (∗summary o f the data ∗)
231
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232 data = {picco , atoms , f i ta toms , norm , atomdensity , peakdens ,

233 twobodyco l l i s i on , threebody los s , O1 , O2 , Tx , Ty , Tc , Tmean ,

234 psdx , psdy , psdmean , ODMax, peak , wXlength , wYlength , MaxX,

235 MaxY, MaxX + l , MaxY + b , xOFF, yOFF, OFF, b , t , l , r , Veff ,

236 TrapDepth , gammael } ;
237

238 numF[ x ] := NumberForm[ x , 3 , ExponentStep −> 3 ] ;

239 (∗ the p l o t s ∗)
240 i n f o = Graphics [

241 Text [

242 Sty l e [

243 Grid [

244 {{ , ”Image ” , picco , , , , , ,} ,
245 { , , ”Max OD” , ”Max OD s t a r t f i t ” , ”Max OD f i t ” , , , , ,} ,

246 { , ”\ !\ (\∗ Subscr iptBox [\”OD\” , \”0\” ]\ )” , numF[ODMax] ,

247 numF[OD[ [MaxY, MaxX ] ] ] , numF[ peak ] , , , , ,} ,
248 { , ”x ” , xmax , MaxX, xOFF, , , , ,} ,
249 { , ”y ” , ymax , MaxY, yOFF, , , , ,} ,
250 { , , , , , , , , ,} ,

251 { , , ”\ [ Sigma ] \ [Mu]m” , ”T \ [Mu]K” , ”\ [ Phi ] ” ,

252 ”\ [Omega ] kHz” , ” f Hz” , ”\ [ Eta ] ” , ,} ,

253 { , ”x ” , numF[ wXlength/mum] , numF[Tx/muK] , numF[ psdx ] ,

254 numF[ omx/1000 ] , numF[ omx/2/Pi ] , numF[−TrapDepth/Tx ]} ,

255 { , ”y ” , numF[ wYlength/mum] , numF[Ty/muK] , numF[ psdy ] ,

256 numF[ omy/1000 ] , numF[ omy/2/Pi ] , numF[−TrapDepth/Ty ]} ,

257 { , ” z ” , , , , numF[ omz/1000 ] , numF[ omz/2/Pi ] , } ,

258 {} ,
259 { , ”mean” , , numF[Tmean/muK] , numF[ psdmean ] ,

260 numF[meanomega /1000 ] , numF[meanomega/2/Pi ] ,

261 numF[−TrapDepth/Tmean ]} ,

262 {} ,
263 { , ”P1 W” , ”P2 W” ,

264 ”\ !\ (\∗ Subscr iptBox [\”U\” , \”0\” ]\ ) \ [Mu]K” , ”N” ,

265 ”\ !\ (\∗ Subscr iptBox [\”N\” , \” f i t \ ” ]\ ) ” , ”TOF (ms)” ,



169

266 ”\ !\ (\∗ Subscr iptBox [\”T\” , \”c \ ” ]\ ) \ [Mu]K” ,

267 ”\ !\ (\∗Overscr iptBox [\”T\” , \
268 \” \ ” ]\ ) / \ !\ (\ ∗ Subscr iptBox [\”T\” , \”c \ ” ]\ ) ” , ”\ [ Capi ta lDe l ta ]T”} ,
269 { , numF[O1 ] , numF[O2 ] , numF[ TrapDepth/muK] , numF[ atoms ] ,

270 numF[ f i t a toms ] , numF[ time/ms ] , numF[Tc/muK] ,

271 numF[Tmean/Tc ] , numF[Tmean − Tc/muK] , ” ”} ,
272 { ,
273 ”\ !\ (\∗ Subscr iptBox [\”n\” , \”TOF\ ” ]\ ) \
274 \ !\ (\∗ Superscr iptBox [\”cm\” ,
275 RowBox[{\”−\” , \ ” 3 \ ” } ] ]\ ) ” ,
276 ”\ !\ (\∗ Subscr iptBox [\”n\” , \”0\” ]\ ) \ !\ (\∗ Superscr iptBox [\
277 \”cm\” ,
278 RowBox[{\”−\” , \ ” 3 \ ” } ] ]\ ) ” ,
279 ”\ !\ (\∗ Subscr iptBox [\”V\” , \” e f f \ ” ]\ ) \
280 \ !\ (\∗ Superscr iptBox [\”cm\” , \”3\” ]\ )” ,
281 ”\ !\ (\∗ Subscr iptBox [ \ ” \ [Gamma]\ ” , \” e l \ ” ]\ ) kHz” ,

282 ”\ !\ (\∗ Subscr iptBox [\”dN\” , \”3\” ]\ )/ dt kHz” ,

283 ”\ !\ (\∗ Subscr iptBox [\”dN\” , \”2\” ]\ )/ dt ”} ,
284 { , numF[ atomdens ity /10ˆ6 ] , numF[ peakdens /10ˆ6 ] ,

285 numF[ Vef f ∗10ˆ6 ] , numF[ gammael /1000 ] ,

286 numF[− th r e ebody lo s s /1000 ] , numF[ twobodyco l l i s i on ]} ,

287 {} ,
288 { , DateStr ing [ F i l eDate [ img f i l e ] ] , SpanFromLeft ,

289 SpanFromLeft , , ,}
290 }
291 , Spacings −> 2 ] , 16

292 ]

293 ] , ImageSize −> Automatic

294 ] ;

295 plotsnnumbers = GraphicsGrid [

296 {
297 { ro i , FitPlotX , FitPlotY , r e s i dua l c l o ud } ,
298 { i n fo , SpanFromLeft , SpanFromLeft}
299 } ,
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300 Spacings −> {0 , 0} , ImageSize −> {{800 , 2500} , {100 , 1000}} ,
301 AspectRatio −> 1/GoldenRatio ] ;

302 Export [

303 Resu l tD i r e c to ry <> ”\\CrossedTrapRegulated” <>

304 Str ingReplace [ img f i l e , ” .TIF” −> ” . g i f ” ] , plotsnnumbers ] ;

305 Export [

306 DataDirectory <> ”\\CrossedTrapRegulated” <>

307 Str ingReplace [ img f i l e , ” .TIF” −> ” . dat ” ] , data ] ;

308 Export [

309 DataDirectory <> ”\\CrossedTrapRegulated” <>

310 Str ingReplace [ img f i l e , ” .TIF” −> ” . txt ” ] , data ] ;

311

312 plotsnnumbers

313 ,

314 Pr int [ ” p i c s not having the r i g h t dimens ions ” ]

315 ] ,

316 Pr int [ ” p i c s not the r e ” ]

317 ] ( ∗End I f ∗)
318 ] ( ∗End Module ∗ ) ;
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Rubidium

Selected porperties of 87Rb taken from [109]

Table C.1: Atomic properties of 87Rb

atomic mass m 86.909180520(15) u

realtive natural abundance η 27.83%

nuclear lifetime τ 4.881010 yr

density at 25 ◦C ρ 1.53 g/cm3

melting point TM 39.31 ◦C

boiling point TB 688 ◦C

vapor pressure at 200 ◦C PV 3.0 ∗ 10−7 Torr

nuclear spin I 3/2
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Table C.2: Properties of the D2-line

frequency ω0 2π384.2304844685(62) THz

transition energy h̄ω0 1.589049439(58) eV

wavelength (vacuum) λ 780.241209686(13) nm

wavlength (air) λair 780.032 nm

lifetime τ 26.24(4) ns

natural line width (FWHM) Γ 2π6.065(9) Mhz
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