
Design, Construction, and Performance

towards

A Versatile

87
Rb &

41
K BEC Apparatus

Nicholas McKay Parry
BSc (Hons)

A thesis submitted for the degree of Master of Philosophy at
The University of Queensland in 2015.

School of Mathematics and Physics
ARC Centre of Excellence for Engineered Quantum Systems



ii

Abstract

The possibility to mould and control pure quantum systems has been offered by

the experimental observation of Bose-Einstein condensation, a unique phase of

matter when macroscopic quantities of a gas occupy the lowest quantum state.

Techniques for creating these degenerate gases vary from laboratory to laboratory;

each offers an unique test bed for studying quantum physics on a macroscopic scale.

This thesis reports on the experimental design, construction and performance of

an apparatus to create two-component 87Rb and 41K condensates for studies of

non-equilibrium dynamics.

This thesis is broken down as follows. In Chapter 1, a brief overview of the

history and status of Bose Einstein condensates is presented, to affirm the mo-

tivation behind our work. Chapter 2 then presents the fundamental theory and

background information to understand how and why our experiment was built.

Chapter 3 describes the bulk of the work undertaken at the beginning of this

thesis. In particular it describes the design choices, construction and performance

of the vacuum, and laser and magnetic coil systems that are the key structural

elements of the apparatus. In particular the vacuum system is a two-component

differentially pumped system designed to optimise the number and lifetime of

trapped atoms. Another integral element of the vacuum chamber is the science

cell that enables high optical access, and close physical, access to an atomic cloud.

As a result, high resolution imaging, ' 980 nm resolution at 780 nm is expected

with a commercial microscope objective lens. The laser system is carefully de-

signed to best combine and deliver the seven different optical frequencies required

to simultaneously trap and manipulate 87Rb and 41K atoms. The magnetic coil

system also represents an integral component of the apparatus, responsible for

trapping and transferring atoms in a quadrupole field. One pair of coils is able

to have their current direction reversed in order to generate bias fields. This al-

lows access to Feshbach resonances between the two species, once they have been
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condensed.

The second part of this thesis, Chapter 4, describes the performance of the

apparatus when used to simultaneously trap 41K and 87Rb in the 3D magneto-

optical trap (MOT) and produce a condensate of 87Rb atoms. In particular 1 ⇥

109 rubidium atoms are routinely trapped in the 3D-MOT and transferred to

the science chamber. In the hybrid trap the atoms are evaporatively cooled via

microwave radiation, later to be used to sympathetically cool 41K, and loaded into

a hybrid optical dipole and magnetic trap. At this stage ' 5 ⇥ 106 atoms are

evaporatively cooled, by lowering the trap depth of the optical dipole beam, until

a condensate of 87Rb is formed, containing 1.5 ⇥ 105 atoms. Additionally we are

able to produce 3D MOTs of 41K simultaneously with the 87Rb 3D MOTs.
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Chapter 1

Introduction

The distinction between bosons and fermions requires little retelling. Fermions, particles with

half-integer spin, are prohibited from occupying the same quantum state simultaneously. Bosons,

which have integer spin, are freely able to occupy the same ground state. Here we are particu-

larly interested, experimentally, of what occurs when a bosonic ensemble’s constituents begin to

occupy the same ground state of a confining potential. As atoms begging to accumulate in this

state, the system will undergo a phase transition as the wave-like nature, of matter, begins to

dominate. This accumulation of particles in the ground state is known as a Bose-Einstein con-

densate (BEC). Bose-Einstein condensation was proposed as an explanation for the properties of

Superfluid 4He [1, 2], and has now been observed in diverse systems including micro cavity po-

laritons [3]. The most striking and relevant example of these phenomena, is the ability to observe

the transition directly as a group of atomic bosons transition to a Bose Einstein condensate.

The concept of a Bose-Einstein condensate emerged from Einstein’s foundational theories of

photon statistics in combinations with de Broglie’s conjecture that particles also possess a wave

nature. A consequence of these statistics is that at very low temperatures an atomic gas of bosons

will begin to have a large portion of atoms reside in the lowest energy quantum state. For a single

particle they are expected to exhibit quantum dynamics once their kinetic energy is less than

the spacing between energy levels in a harmonic trap, k
B

T < ~!
ho

, while a sample of N bosons

has a significant fraction of particles in the ground state when k
B

T < N1/3~!
ho

. As a result,

a macroscopic number of particles can exhibit quantum behaviour. This property forms the

basis of the allure and celebration of BECs. The first experimental observation of Bose-Einstein

condensation, in 1995 [4, 5], has allowed experimentalists since to observe and study quantum

3
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phenomena on a macroscopic scale. The significance of this achievement is encapsulated in 2001

by the awarding of the Nobel Prize in Physics [6, 7].

This present potential and ability of BEC experiments, has been brought about by the

progress made in exploiting the quantum nature of a Bose-Einstein condensate and building

upon the history of experimental techniques. Seminal examples of early BEC research, which

form the backbone of modern experiments, are the demonstration of interference between two

condensates [8], investigations into long-range phase coherence [9], and observation of quantised

vortices [10].

One application of the phase coherence of BECs is matter-wave interferometry, the measuring

of phase shifts using the interference of two or more waves, has long been a technique of central

importance in physics. Such techniques have enabled some of the most precise measurement

devices known. With the development of quantum mechanics it was shortly realised that the

wave-like nature of particles could provide sensitivity and precision well below the standard

classical limit. BECs represent a strong basis for measuring quantities via interferometry such

as acceleration, rotation, frequency, and gravity [11, 12, 13, 14]. A recent example of using

the interfering properties of matter waves, used approximately 30 BECs, comprising of 300 to

600 87Rb atoms each, and made use of atomic squeezing to demonstrate quantum enhanced

magnetometry down to 310(47) pT [15]. Using similar techniques it is expected that these

systems may be used to reach down to Heisenberg limit [16]. The progress in moving from

the general observation of matter wave interference to the precision measurements is a direct

consequence of improvements in instrumentation and control afforded to experimentalists.

Instrumentation improvements in ultra cold atom experiments are well encapsulated through

descriptions of recent atomic lattice experiments. Creating an optical lattice (alternating bright

and dark regions of an optical field) has recently come to the forefront as a confining potential

for quantum emulation of many-body systems [17]. In particular the observation of a superfluid,

where the atomic ensemble acts as a single coherent matter wave permeating the entire lattice,

to a Mott insulator, where each lattice site has a discrete number of atoms per site, has enabled

enhanced studies into quantum dynamics on the macroscopic scale while observing individual

particles. These systems offer wealth of control, which is well poised for studying and emulating

a variety of many-body systems [17]. State of the art experiments have adapted high resolution

absorption and fluorescence imaging system into BEC experiments, enabling high-precision and

in-situ knowledge of atom number distributions throughout the lattice [18, 19]. The absorption

scheme of the Oberthaler lab [20] has demonstrated a resolution down to 3.7 atoms, while fluo-
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rescence schemes have been shown to resolve single atoms [21]. Experimentally, this has enabled

the emulation of a host of ‘solvable’ systems, representing the first steps towards emulation of

more complex systems. In particular recent experiments have observed the quantum dynamics

of a mobile spin impurity [22] before subsequently expanding towards the emulation of magnon

bound state dynamics [23]. The latter experiment maps the Hamiltonian of a one-dimensional

array of bosonic atoms to that of ferromagnetic spin-1/2 Heisenberg chain in order to observe two

magnon bound states. Such states were predicted to exist in one-dimensional quantum magnets

some 80 years ago [24]. Similar experiments include the simulation of antiferromagnetic spin

chains [25] and direct measurement of two-site correlation functions of electron-hole pairs [26].

The technical progress of these systems thus facilitates applications to a wealth of processes

that have intersection and overlap between many different research fields, ranging from quantum

optics to solid-state physics [17]. Examples include the use of degenerate gases to connect neutral

atom condensates to the quantum Hall effect [27, 28]. Similarly, the sub-field of atomtronics

has emerged for the creation of new quantum devices [29, 30, 31]. Investigations into one-

dimensional quantum system and the role of quantum fluctuations [32, 33], Hubbard and spin

models, which are ‘reasonable representations’ of real system may be perfectly modelled with

ultra cold atoms [34, 35], disordered systems and localisation [36], and superchemistry to study

chemical reactions in a controlled way [37] are all examples of research areas ultra cold atoms

intersect.

This list is by no means exhaustive, but aids in illustrating the breadth and depth degener-

ate ultra-cold gases afford to physicists. More recently, degenerate quantum gases have shown

promise as a system that can be easily driven out of equilibrium, and thus have emerged as a

promising system for the study of non-equilibrium dynamics in a closed quantum system.

1.1 Non-Equilibrium Dynamics and Ultra-cold Gases

The motivation behind using degenerate gases for the study of non-equilibrium dynamics is

presented in this (non-exhaustive) overview of recent relevant experiments. Here we attempt to

demonstrate how the intrinsic properties of a Bose-Einstein condensate, as well as advances in

experimental tools and techniques, provide a well suited test-bed for studying non-equilibrium

dynamics in a closed interacting quantum system, motivating the apparatus constructed during

the time of this thesis.

Typically, equilibrium systems may often be understood using combinations of mean-field
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theory, renormalisation groups, and universality allowing an understanding of a great deal of

rather complex many-body system from simple models. As a system moves away from equilibrium

the situation becomes clouded, and it remains unclear whether simplified models accurately

describe experiments of more complex systems [38]. In addition, tools to study these systems

have been few and far between. More recently, the increasing amount of control afforded by

ultra cold atomic gas experiments, has provided a landscape well suited for studies of systems

away from equilibrium. In general, non-equilibrium dynamics is a pressing and important area of

research due to the broad scope of the field. These include open problems in cosmology [39, 40]

and condensed matter [17, 41]. As there are many ways to move a system away from equilibrium,

such as applying a small driving field, or pumping energy or particles through reservoirs in

transport problems, we focus here on a simplified system. As such we limit the scope to closed

interacting quantum systems following sudden parameter quenches. A quench refers to a non-

adiabatic change to the system parameters, particular interesting when observing what occurs

when quenching a system through phase transition.

As mentioned, a key challenge in studying non-equilibrium systems is the limited number

of test beds available in which their dynamical evolution is feasibly observable, while having

sufficient tuneability. In order to satisfy these requirements any experiment should be well

isolated (closed) while being physically accessible to interact with. Generally speaking, a pre-

requisite in creating robust and reliable ultra cold atomic gases is a high degree of isolation, the

vacuum chamber, from external influences. Accessibility, for control and observation, is generally

determined by the design of the vacuum apparatus and other elements of infrastructure required.

Similarly external infrastructure determines the confining potential of an atomic cloud, which

may be generated by either, or a combination of, magnetic and optical fields [42, 43]. Historically,

early experiments were resigned to rather simple harmonic trapping potentials. Today much more

exotic and arbitrary trapping schemes have been developed. Movement towards homogenous, in

terms of density, systems in two and three-dimensional boxes and ring traps [44, 45, 46] have

become prevalent. In particular the homogenous cylindrical system of 2 ⇥ 105 87Rb atoms of

the Hadzibabic group, Fig 1.1.1 (left), has gained particular attention for exploring a variety of

systems including an analogue of an unstable vacuum to emulate the early universe [47]. The

homogeneity is somewhat unique in ultra cold atoms, which are normally harmonically confined,

linking more readily to models and systems that are not.

Trapping potentials are further tailorable, using micro-fabricated atom-chips [48], or through

the use of interfering laser beams to create optical lattice. Such techniques continue to demon-
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Bose-Einstein Condensation of Atoms in a Uniform Potential

Alexander L. Gaunt, Tobias F. Schmidutz, Igor Gotlibovych, Robert P. Smith, and Zoran Hadzibabic
Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

(Received 14 March 2013; published 16 May 2013)

We have observed the Bose-Einstein condensation of an atomic gas in the (quasi)uniform three-

dimensional potential of an optical box trap. Condensation is seen in the bimodal momentum distribution

and the anisotropic time-of-flight expansion of the condensate. The critical temperature agrees with the

theoretical prediction for a uniform Bose gas. The momentum distribution of a noncondensed quantum-

degenerate gas is also clearly distinct from the conventional case of a harmonically trapped sample and

close to the expected distribution in a uniform system. We confirm the coherence of our condensate in a

matter-wave interference experiment. Our experiments open many new possibilities for fundamental

studies of many-body physics.

DOI: 10.1103/PhysRevLett.110.200406 PACS numbers: 03.75.Hh, 67.85.!d

Ultracold Bose and Fermi atomic gases are widely used
as test beds of fundamental many-body physics [1].
Experimental tools such as Feshbach interaction reso-
nances [2], optical lattices [3], and synthetic gauge fields
[4] offer great flexibility for studies of outstanding prob-
lems arising in many areas, most commonly in condensed-
matter physics. However, an important difference between
‘‘conventional’’ many-body systems and ultracold gases is
that the former are usually spatially uniform whereas the
latter are traditionally produced in harmonic traps with no
translational symmetries.

Various methods have been developed to overcome this
problem and extract uniform-system properties from a
harmonically trapped sample [5–13], relying on the local
density approximation [5–11] or selective probing of a
small central portion of the cloud [11–13]. Sometimes
harmonic trapping can even be advantageous, allowing
simultaneous mapping of uniform-system properties at
different (local) particle densities. On the other hand, in
many important situations local approaches are inherently
limiting, for example, for studies of critical behavior with
diverging correlation lengths. The possibility to directly
study a spatially uniform quantum-degenerate gas has thus
remained an important experimental challenge. So far,
atomic Bose-Einstein condensates (BECs) have been
loaded into elongated [14] or toroidal [15] traps that are
uniform along only one direction while still harmonic
along the other two directions.

Here, we demonstrate the Bose-Einstein condensation of
an atomic gas in a three-dimensional (3D) (quasi)uniform
potential. We load an optical box trap depicted in Fig. 1(a)
with 87Rb atoms precooled in a harmonic trap and achieve
condensation by evaporative cooling in the box potential.
Below a critical temperature Tc " 90 nK, condensation is
seen in the emergence of a bimodal momentum distribu-
tion and the anisotropic time-of-flight (TOF) expansion
of the BEC. We characterize the flatness of our box poten-
tial and show that both the momentum distribution of the

non-condensed component and the thermodynamics of
condensation are close to the theoretical expectations for
a uniform system, while being clearly distinct from the
conventional case of a harmonically trapped gas. We also
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FIG. 1 (color online). Preparing a quasiuniform Bose gas.
(a) The optical-box trap is formed by one hollow tube beam and
two sheet beams creating a repulsive potential for the atoms. The
atomic cloud is confined to the dark (red) cylindrical region.
Gravitational force is canceled by a magnetic field gradient B0.
(b) The three trapping beams are created by reflecting a single
Gaussian beam off a phase-imprinting spatial light modulator.
(c) The atoms are loaded into the box trap after precooling in a
harmonic trap. (d) In situ images of the cloud just before (left) and
after (right) loading into the box and corresponding line-density
profiles along x (bottom plots) and z (side plots) directions. OD
stands for optical density; the line densities along x (z) are
obtained by integrating the images along z (x). The blue dashed
lines in the left panel are fits to the thermal component of the
harmonically trapped gas. Thegreendashed lines in the right panel
are fits based on the expected profiles for a uniform-density gas.

PRL 110, 200406 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
17 MAY 2013

0031-9007=13=110(20)=200406(5) 200406-1 ! 2013 American Physical Society

By analyzing each of the nine traces, we find that the
occupation probability pi of each trap i is close to 1=2. (We
find probabilities pi ranging from 0.43 to 0.57, with an
average p̄ ¼ 0.53.)
Figure 3(d) is a histogram of the number of atoms

trapped in the 3 × 3 array, obtained by analyzing approx-
imately 2500 images [23]. For an array of N independent
traps, if each trap has the same probability p to be filled, the
probability Pn to have n atoms in the array is given by the
binomial distribution

Pn ¼
N!

n!ðN − nÞ!
pnð1 − pÞN−n: (1)

The dots in Fig. 3(d) correspond to Eq. (1) with N ¼ 9 and
p ¼ p̄ and show good agreement with the data. Therefore,
the assumption that all traps are loaded with the same
probability is a good approximation for estimating the
probability of a given configuration to occur.

III. DETAILED IMPLEMENTATION

In the preceding section, we focused on giving a detailed
presentation of the results obtained. However, obtaining
arrays of traps with as high a quality as what is demon-
strated in Figs. 2 and 3 requires some care in the
implementation of the setup. In this section, we detail
the implementation of both the hardware and the software
parts of the system.

FIG. 2. A gallery of microtrap arrays with different geometries. For each panel, we show the calculated phase pattern φ used to create
the array (left), an image of the resulting trap arrays taken with the diagnostics CCD (middle), and the average of approximately 1000
fluorescence images of single atoms loaded into the traps (right).

SINGLE-ATOM TRAPPING IN HOLOGRAPHIC 2D ARRAYS … PHYS. REV. X 4, 021034 (2014)

021034-3

Figure 1.1.1: (left) Cylindrical box trap used for creating homogenous condensates. (a) The
optical box trap formed from one hollow and two sheet beams created from a single SLM (b).
(c) and (d) show the cloud distribution just before loading into the box trap and after, taken
from [46]. (Right) Variety of 2D lattice potentials created from an SLM and loaded with atoms
in the third box, taken from [55]

strate a great variety of different structures and dimensionality [49, 50, 51, 52, 53]. In particular,

these references demonstrate the use of triangular, hexagonal, superlattice, and Kagomé lattice

types. Systems with reduced dimensionality are also gaining traction, with improvements in

spatial light modulator technology enabling arbitrary confining potentials to be made [54]. The

ability of spatial light modulators is well demonstrated in [55] where arbitrary two-dimensional

arrays of micro traps were created to trap single 87Rb atoms as shown in Fig, 1.1.1 (right).

In short, the technical advances in trapping potentials enable an almost limitless supply

and variety of confining potentials yielding a great deal of control over the environment atoms

may reside within. Further, these elements may be dynamic and used to move a system from

equilibrium as required.

In addition, to control the trapping potential landscape, it is important to be able to observe

the dynamical evolution of a system following a quench. Generally, this refers to the ability

to observe the relevant energy scales of temperature, kinetic and/or interaction energy that are

of the order of milliseconds [56], much shorter than the average lifetime and coherence of the

condensate, lasting many seconds. As such it is possible to follow the intrinsic quantum dynamics

of ultra cold gases for very long timescales. An example of this is the seminal work conducted by

Greiner et al. [57] that followed the unitary evolution of a quantum many-body system. This was
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macroscopic matter wave field w¼ kaðtÞjâjaðtÞl; which has an
intriguing dynamical evolution. At first, the different phase evol-
utions of the atom number states lead to a collapse of w. However, at
integer multiples of the revival time trev ¼ h=U all phase factors in
the sum of equation (2) re-phase modulo 2p, leading to a perfect
revival of the initial coherent state. The collapse time t c depends on
the variance j2n of the atom number distribution, such that tc <

trev=jn (see refs 1–5). A more detailed picture of the dynamical
evolution ofw can be seen in Fig. 1, where the overlap of an arbitrary
coherent state jbl with the state jal (t) is shown for different
evolution times up to the first revival time of themany-body state8,9.

In our experiment, we create coherent states of the matter wave
field in a potential well, by loading a magnetically trapped Bose–
Einstein condensate into a three-dimensional optical lattice poten-
tial. For low potential depths, where the tunnelling energy J is much
larger than the on-site repulsive interaction energyU in a single well,
each atom is spread out over all lattice sites. For the case of a
homogeneous system with N atoms and M lattice sites, the many-
body state can then be written in second quantization as a product
of identical single-particle Bloch waves with zero quasi-momentum
jWlU=J¼0 /

PM
i¼1 â

†
i

! "Nj0l. It can be approximated by a product
over single-site many-body states jfil, such that jWlU=J¼0 <QM

i¼1 jfil: In the limit of large N and M, the atom number
distribution of jfil in each potential well is poissonian and almost
identical to that of a coherent state. Furthermore, all the matter
waves in different potential wells are phase coherent, with constant
relative phases between lattice sites. As the lattice potential depth VA
is increased and J decreases, the atom number distribution in each
potential well becomes markedly subpoissonian10 owing to the
repulsive interactions between the atoms, even before entering the
Mott insulating state11–13. After preparing superposition states jfil
in each potential well, we increase the lattice potential depth rapidly
in order to create isolated potential wells. The hamiltonian of
equation (1) then determines the dynamical evolution of each of
these potential wells.

The experimental set-up used here to create Bose–Einstein
condensates in the three-dimensional lattice potential (see
Methods) is similar to that used in our previous work11,14,15. Briefly,
we start with a quasi-pure Bose–Einstein condensate of up to
2 £ 105 87Rb atoms in the jF ¼ 2;mF ¼ 2l state in a harmonic
magnetic trapping potential with isotropic trapping frequencies of
q¼ 2p£ 24Hz:Here F andmF denote the total angularmomentum

Figure 1 Quantum dynamics of a coherent state owing to cold collisions. The images a–g
show the overlap jkbjaðt Þlj2 of an arbitrary coherent state jbl with complex amplitude b
with the dynamically evolved quantum state jal(t) (see equation (2)) for an average
number of jaj2 ¼ 3 atoms at different times t. a, t ¼ 0h=U ; b, 0.1 h/U; c, 0.4 h/U;
d, 0.5 h/U; e, 0.6 h/U; f, 0.9 h/U; and g, h/U. Initially, the phase of the macroscopic matter
wave field becomes more and more uncertain as time evolves (b), but remarkably at t rev/2
(d), when the macroscopic field has collapsed such that w < 0, the system has evolved

into an exact ‘Schrödinger cat’ state of two coherent states. These two states are 1808 out

of phase, and therefore lead to a vanishing macroscopic field w at these times. More

generally, we can show that at certain rational fractions of the revival time t rev, the system

evolves into other exact superpositions of coherent states—for example, at t rev/4, four

coherent states, or at t rev/3, three coherent states
2,4. A full revival of the initial coherent

state is then reached at t ¼ h/U. In the graph, red denotes maximum overlap and blue

vanishing overlap with 10 contour lines in between.

Figure 2 Dynamical evolution of the multiple matter wave interference pattern observed
after jumping from a potential depth VA ¼ 8 E r to a potential depth VB ¼ 22 E r and a

subsequent variable hold time t. After this hold time, all trapping potentials were shut off

and absorption images were taken after a time-of-flight period of 16ms. The hold times t

were a, 0 ms; b, 100ms; c, 150ms; d, 250ms; e, 350ms; f, 400ms; and g, 550ms. At
first, a distinct interference pattern is visible, showing that initially the system can be

described by a macroscopic matter wave with phase coherence between individual

potential wells. Then after a time of,250ms the interference pattern is completely lost.

The vanishing of the interference pattern is caused by a collapse of the macroscopic

matter wave field in each lattice potential well. But after a total hold time of 550ms (g) the
interference pattern is almost perfectly restored, showing that the macroscopic matter

wave field has revived. The atom number statistics in each well, however, remains

constant throughout the dynamical evolution time. This is fundamentally different from the

vanishing of the interference pattern with no further dynamical evolution, which is

observed in the quantum phase transition to a Mott insulator, where Fock states are

formed in each potential well. From the above images the number of coherent atoms Ncoh

is determined by first fitting a broad two-dimensional gaussian function to the incoherent

background of atoms. The fitting region for the incoherent atoms excludes

130mm £ 130mm squares around the interference peaks. Then the number of atoms in

these squares is counted by a pixel-sum, from which the number of atoms in the

incoherent gaussian background in these fields is subtracted to yield N coh. a.u., arbitrary

units.
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Figure 1.1.2: Dynamical evolution of rephasing dynamics as an atomic cloud of 87Rb is quenched
across the superfluid to Mott insulator transition and lattice depth brought down. These continue
to oscillate in and out of phase with time as the matter wave evolves image from [57]

done by looking at coherence reconstruction following a quench of atoms confined to an optical

lattice. In particular a 87Rb degenerate ensemble was removed from equilibrium (superfluid

regime) by quenching the depth of the lattice potential towards the Mott insulator regime. As

the depth was subsequently dropped the rephasing dynamics were observed, and the extent to

which coherence was restored across the cloud observed for different quench times, Fig. 1.1.2.

Similar experiments by Weiler et al. [58] and Lamporesi et al. [59] monitored the formation

of defects as 87Rb atoms were quenched across the Bose Einstein condensate transition. They

studied this with different transition rates revealing the formation of defects that would alter

with different speeds. Non-equilibrium dynamics are also known to persist when observing long-

lived pre-thermalisation states on integrable systems. Kinoshita et al. [33] showed this with a

1D out-of-equilibrium 87Rb gas. After being hit with an optical phase grating, momenta space

oscillations occurred (similar to an idealised Newton’s cradle) and did not equilibrate, even after

thousands of elastic collisions between the particles.

One of the most significant elements of modern BEC experiments is the adaptation of high res-

olution imaging into cold atom experiments. The complexity of these experiments has increased

from looking at generalised atom tunnelling dynamics [21] to observation of spin correlation decay

in an emulation of ferromagnetic Heisenberg quantum magnets far from equilibrium [60]. The

work of Cheneau et al. used high resolution imaging to observe the finite velocity of propagating

correlations in a 1D array of cold atoms as the system was quenched [61]. This study was related

to investigating Lieb-Robinson bounds, finite spreading of correlations in a finite many-body
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system, which have been well studied theoretically but not observed directly [61].

More recently, work undertaken by Braun et al. (in the same research group) has explored

how a system moves across the Mott-Insulator transition, rather than the consequences after the

fact [62]. These dynamics pose one of the more challenging aspects of many body physics. Here

they studied the emergence of coherence when crossing the superfluid Mott insulator regime.

First they compared the experimental results, of the quench of one-dimensional arrays of ultra-

cold 39K atoms (spaced 736 nm) apart to that predicted by theory. In doing so they found

remarkable agreement, indicating that system could be used to explore similar quench dynamics

on domains, which cannot efficiently be simulated. The dynamics of the quench were then

studied for higher dimensional lattices (2D and 3D) where no classical simulations are available.

Further, universality is not observed in the coherence length under certain conditions. This is a

remarkable study that demonstrates how ‘ideal’ an experimental landscape the ultra cold atom

systems can be. This is particularly demonstrated by the ability to study dynamics away from

equilibrium even when simulations are not available.

Additional freedom and control, in ultra cold atoms, is afforded with the existence of internal

atomic states. Depending on what is required, these may be controllable using (in combination

or alone) optical, microwave, radio-frequency or magnetic fields. Additionally, by varying how

strongly particles interact, their temperature, density or trap dimensionality may control mo-

tional degrees of freedom. Of particular significance is the ability to tune interaction strength

between atoms, using what is known as a Feshbach resonance [63], discussed in detail in sec-

tion 2.7. Generally this resonance can be used to tune interactions from being positive (repulsive)

to negative (attractive). Switching of magnetic fields is often on the order of 100 µs, faster than

the cloud can track, meaning Feshbach resonances may be quenched across for interesting stud-

ies. For example, the work done by Hung et al placed 2⇥104 133Cs atoms into a two-dimensional

‘pancake trap’. By quickly altering the scattering interaction strength, the emergence of density

fluctuations and movement towards homogenous, or smooth, density distributions were observed.

Other examples of using Feshbach resonances are the dynamics of a one-dimensional Ising spin

chain [64], superheating [65] and atom interferometry experiments [66].

In summary, technical and analytical innovations, for use in ultra-cold atom experiments,

have provided a strong experimental landscape for the study of non-equilibrium dynamics in

closed, interacting many-body quantum systems. In particular, the ability to create configurable

trapping potentials of almost any size, shape, dimensionality, and strength, and the inherent

isolation and time-scales of ultra cold atom experiments make them well suited for these studies.
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Another layer of complexity, control, and opportunity is afforded to experimentalists when more

then one atomic species is added to the mix. This is the basis of the work contained within this

thesis. More precisely, we set out to construct an apparatus with similar capabilities to the state

of the art systems, while introducing a second atomic species for an enhanced parameter space.

1.2 Motivation

As mentioned, when an atomic ensemble contains more then one type of atom a layer of com-

plexity is added. In particular the atoms now have interactions, not only with their own type,

but also with the other atomic species. This interaction, quantified and described by the scat-

tering length a
ij

, may also exhibit a Feshbach resonance that can be readily controlled. As such

the two atomic species may be readily repelled or attracted to another. These types of systems

can display a phase transition from the miscible to immiscible regime depending on how they

interact [67]. In the miscible regime, an equal density distribution of each atomic species is ex-

pected across the trapping region while in the immiscible segregation of the two atomic species

is expected. While a relatively simple concept, this property of atomic mixtures provides rich

topological potential as one moves along the miscibility spectrum.

Initially, ultra-cold atomic mixtures were Fermi-Bose mixtures focussed on achieving degener-

ate Fermi gases while using the Bose component to sympathetically cool the Fermi gas. However

the Bose-Bose mixtures have gained traction as of late. A decade ago only double species ex-

periments existed, 41K-87Rb [68], 39K-87Rb [69], 174Yb-176Yb [70] being the pioneering mixture

experiments. Today many more exist, developed with specific research goals in mind. A number

of 85Rb-87Rb apparatus exist that are geared towards improvements in atom interferometry [66],

and their usage as a space-based interferometer [71]. Similarly more exotic mixtures are reg-

ularly demonstrated. This includes the work towards a dual species dysprosium condensate

(160Dy-162Dy), useful for ultra cold dipolar physics [72].

Here we are interested in the usage of the dynamics of a quench across a Feshbach res-

onance to induce the transition from miscible to immiscible phase. Such a system does not

instantaneously separate into two distinct atomic regions, but rather undergoes a more complex

dynamical trajectory [73, 74]. Recent theoretical work from Hofman et al. [75] and Karl [76] has

explored these dynamics and examined their non-trivial behaviour. Interestingly, this system is

expected to exhibit self-similar behaviour at different time scales of the dynamics. In essence,

the system dynamics are independent of the microscopic dynamics, and time evolution of any
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ensemble quantity is captured in the rescaling of a characteristic length scale. In domain dy-

namics this refers to region size growth with time. Thermalization of this experiment occurs

when only two macroscopic domains of each species remains but the emergence of long-lived

non-equilibrium states have been predicted [76]. Exploration of dual species condensates and

their associated superfluid to Mott insulator transition, on a variety of lattice geometries, is also

of future interest.

The experimental apparatus, discussed in this thesis, was thus constructed to create a dual-

component condensate of 87Rb and 41K. This particular mixture was chosen as potassium and

rubidium mixtures are relatively well established in the field [77, 78, 79, 80]. As a result it was

anticipated that construction, development and optimising time could be reduced significantly if

instead another, less known, mixture was attempted. 87Rb may be used as a thermal reservoir to

efficiently cool 41K to aid in reducing it to degeneracy. Most importantly, however, is that two

broad, magnetic Feshbach resonances between the two species. These exist at experimentally

accessible magnetic fields allowing good control over the interaction strength between the two

types of atoms.

The design, construction and initial performance of the experimental apparatus that will

produce 87Rb and 41K condensates are the culmination of my Masters work. Chapter 2 of this

thesis is devoted to an overview of theoretical foundations required to create a degenerate atomic

gas. Chapter 3 will discuss the design and construction of the major infrastructure elements

required to begin the pathway to condensation while Chapter 4 describes technical details on the

experiments performance thus far, including the achievement of a 87Rb BEC. Lastly Chapter 5

will discuss the future plans for the experiment before presenting an overview on the research

activity undertaken during the previous two years.
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Chapter 2

Laser Cooling, Magnetic Trapping

and Evaporation

This chapter contains theoretical basis of techniques used to cool, trap and condense atoms

in our apparatus. The order of material is presented to correspond to the progression of the

experimental procedures, currently in place and those to be implemented, used to create cold

and degenerate gasses in the laboratory. Theory to be discussed is the (a) principles behind laser

cooling and trapping in a magneto-optical trap, (b) magnetic trapping, (c) evaporative cooling,

(d) optical dipole traps, (e) imaging and analysis techniques and (f) theory of Bose-Einstein

condensates.

2.1 Laser Cooling and Trapping

The use of laser light for the cooling and trapping of atoms is the starting point of virtually all

ultra cold atom experiments. It enjoys a rich history that culminated in the 1997 Nobel Prize in

Physics award [81, 82, 83] for development of the experimental methods and theoretical under-

standing of the phenomena, given to W. Phillips, C. Cohen-Tannoudji and S. Chu. However, the

history of atom light interactions is older by several centuries, dating back to Kepler in his 1619

treatise ‘De cometis’ [84]. This hypothesised radiation pressure, proposed on the observation of

comet tails pointing away from the sun [84]. A greater understanding was achieved in the 19th

century through Maxwell’s equations and a similar expression derived by Bartoli in 1876 [85, 86].

Despite this progress, it was several decades before the first experimental measurement of radi-

13



14 CHAPTER 2. LASER COOLING, MAGNETIC TRAPPING AND EVAPORATION

ation pressure took place, undertaken by Lebedev [87] and then Nichols and Hill [88, 89]. This

force was experimentally quantified by allowing light to fall upon a delicately poised vane of metal

in a torsion-balanced Crookes apparatus with variable internal pressure. Subsequently, in 1917,

Einstein introduced the concept of a photon to describe the energy exchange that occurs between

fields and particles [90]. Following these experiments, interest in radiative forces grew quickly as

a potential tool for the investigation of emerging relativistic [91] and quantum theories [92].

Formal laser cooling and trapping began in the ‘70s when Hänsch & Schawlow [93] and

Wineland & Dehmelt [94] independently proposed using laser light for the cooling of neutral

atoms. Stable trapping configurations, however, were not proposed until 1978 by Ashkin [87]

and realised for neutral atoms in 1981/2 for sodium [97]. The significance of laser cooling is

now celebrated universally, not only by the award of the 1997 Nobel prize ‘for the development

of methods to cool and trap atoms with laser light’, but due to the widespread use of these

pioneering techniques as the basis for almost all cold atom experiments.

2.1.1 Atom-Light Interactions

The starting point for the preparation towards quantum degeneracy is the cooling and trapping

of atoms with light. Here a brief derivation of the interaction is presented and the interested

reader is referred to more comprehensive texts [96] and review articles [42].

An atom experiences a net force in the atom-light interaction as a result of several distinct

processes taking place. These are photon absorption, spontaneous emission, and dipole forces.

While all contribute to a single interaction, typically one dominates the other, playing very

distinct roles in the cooling and manipulation of trapped atoms. Experimentally, cooling of

atomic clouds generally depends primarily on the scattering force (absorption and emission),

while the optical dipole force is mostly used for trapping and control. This is because it presents

a nearly conservative trapping potential. Furthermore, the optical dipole force is only dependent

on intensity gradients in a light field and thus can create a variety of trapping potentials.

That light has any effect on an atom is a result of the dipole moment, p, which may be

induced on an atom in the presence of an external electromagnetic field E. In the absence of

saturation effects, the dipole density p̂ can be linearly related to the electric field;

h |p| i = ↵(!)E. (2.1.1)

Where ↵(!) is the complex polarisability of the atom, dependent on the laser frequency, !. The
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imaginary part of the polarisability is related to absorption, appearing in the standard Lambert-

Beer law, while the real part is associated with the reactive, or dipole, force. Polarisability is

an integral component of the two forces associated with the atom-light interaction and a large

amount of information may be gained from knowledge on its functional form. To find ↵(!) we

consider an atom exposed to an external electric field, E. For an isolated atom perturbed by

the radiation, the total Hamiltonian becomes Ĥ = Ĥ0 + Ĥ
dip

, with Ĥ0 the Hamiltonian in the

absence of the field, and the perturbing dipole interaction given by:

Ĥ
dip

= �p · E. (2.1.2)

To find the polarisability we need to find a solution to the time-dependent Schrödinger equation.

This is done by considering the wave function,  , to be a superposition of the eigenstates of the

unperturbed system. Also note that p = �er, where r is the coordinate of the electron and e

the election charge. Assuming a two level system with ground state  1 and excited state  2 we

may write,

 (r, t) = ⇢1(t) 1(r, t) + ⇢2(t) 2(r, t). (2.1.3)

Where ⇢1(t)2 + ⇢2(t)2 = 1 and |⇢
i

(t)|2 are the state amplitudes. We assume separability and

consider,

 
i

(r, t) = e� i
~Eit�

i

(r). (2.1.4)

Here E
i

are the energy eigenvalues of the unperturbed Hamiltonian. Assuming a classical

laser field, E(t) = E0cos(!t), and that the spatial variation of the field amplitude is insignificant

compared to the length scale of the atom the time-dependent Schrödinger equation may be used

to show,

⇢̇1(t) =
i

~⇢2(t)p12 · E0cos(!t)e� i
~ (E2�E1)t, (2.1.5)

⇢̇2(t) =
i

~⇢1(t)p21 · E0cos(!t)e
i
~ (E2�E1)t. (2.1.6)

Here we have introduced the dipole matrix elements,

p
ij

= hi|p|ji =

Z
�⇤

i

(r)p(r)�
j

(r)dV. (2.1.7)
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These define the coupling between the two states due to the oscillatory field. The strength of

this coupling is measured by the Rabi frequency, ⌦, given by

⌦ =
|p12 · E|

~ =
|p21 · E|

~ . (2.1.8)

This expression accurately describes the population exchange between the ground and excited

state when exposed to an external field but does not account for spontaneous emission from the

upper state. This is an integral element of the atom-light interaction. This may be introduced via

the on resonance dampening term �
!0 = �

w

= � that acts to deplete the upper state. Defining

the transition energy between the states as !0 = (E2 � E1)/~, eqn. (2.1.5) & (2.1.6) may be

re-written as:

⇢̇1(t) � �
!0

2
⇢2(t) = i⇢2(t)⌦cos(!t)e�i!0t (2.1.9)

⇢̇2(t) +
�

!0

2
⇢2(t) = i⇢1(t)⌦cos(!t)ei!0t. (2.1.10)

Where, for red detuned beams, �
!0 = (!2/!2

0)� are the on resonant damping coefficients, and

� the natural line width. By looking at the steady-state solution in the presence of an electric

field, i.e. the case where the state populations are constant, ↵(!), may be found. Steady state

occurs when.

d

dt
|⇢

i

(t)2| = 0. (2.1.11)

Further,

h |p| i =

Z
 ⇤p dV = ⇢⇤

1⇢2p12e
�i!0t + ⇢1⇢

⇤
2p21e

i!0t = ↵E0cos(!t). (2.1.12)

After some rearrangement and simplifications the atomic polarisability may then be given by,

↵(!) = 6⇡✏0c
3 �/!2

0

!2
0 � !2 � i(!3/!2

0)�
. (2.1.13)

Where the natural linewidth � is calculated by evaluating the dipole matrix element,

� =
!3

0

3⇡✏0~c3
|h 2|p| 1i|2. (2.1.14)



2.1. LASER COOLING AND TRAPPING 17

With this expression, for the atomic polarisability, the dipole potential and scattering rates

may be found. Recalling that these are the two forces arising in the atom-light interaction

related to the real and imaginary component of the complex polarisability. The dipole interaction

potential of the induced dipole is given by:

U
dip

=
1

2
hp · Ei = � 1

2✏0c
Re(↵)I(r). (2.1.15)

Where the brackets denote the time average over the rapid oscillating terms, and the spatially

varying field intensity is given by I(r). The dipole force is the gradient of the interaction potential

such that;

F
dip

= �rU
dip

=
1

2✏0c
Re(↵)rI(r). (2.1.16)

Similarly the scattering force is derived from the imaginary, out of phase, component of the dipole

oscillation that may be interpreted in terms of the photon scattering in cycles of absorption and

subsequent spontaneous re-emission processes. The corresponding scattering rate is given by:

�
sc

=
P

abs

~! =
1

~✏0c
Im(↵)I(r), (2.1.17)

where P
abs

is the absolute power at the atom location.

In most experiments the laser frequency is tuned sufficiently far from !0 such that nonlinear

contributions are negligible but close enough that the detuning is much smaller than the resonant

frequency, i.e. |�| << !0. In this situation the rotating wave approximation holds and the

following useful expressions for the dipole potential and scattering rate may be found:

U
dip

(r) =
3⇡c2

2!3
0

�

�
I(r), (2.1.18)

�
sc

(r) =
3⇡c2

2~!3
0

✓
�

�

◆2

I(r). (2.1.19)

These expressions not only quantitatively describe the atom-light interaction for small de-

tunings but also convert valuable information for designing experiments. Firstly, the dependence

of the dipole force on intensity gradients, rI(r) is discussed. This is significant as having a

non-uniform light field may create a confining potential. Additional, for the dipole force, we can

understand how the sign of the detuning determines whether the light field has an attractive or

repulsive character. In the case of red detunings, � < 0, the intensity maximum represents the
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minimum of the potential, and atoms will accumulate in these areas. Conversely, for blue detun-

ings, � > 0, intensity minima are the minimum of the potential and atoms will be repulsed by

intensity maxima. Each type of trapping landscape holds its own advantage and disadvantages,

which must be considered when designing trapping potentials.

Lastly the scaling of the dipole potential and scattering force is of interest. The dipole force

scales as I/� while the scattering scales as I/�2. At sufficiently large detunings the scattering

force becomes small and a dipole field may be considered nearly conservative. It is not advisable

to have dipole traps with comparable reactive and scattering rates, as their shallow depth means

that even a few scattering events may cause heating and rapid depletion of atoms. The fine

points of the scattering rate equation, and its implications, will be discussed in depth later.

The treatment of a two-level system represents a simplification of real atoms. In order to

calculate the actual dipole potential of multilevel alkali atoms, such as 87Rb and 41K, a common

detuning over the relevant transition cannot always be assumed. When substates and multiplicity

are taken into account, a more accurate description of the potential is given by:

U
dip

(r) =
⇡c2�

2!3
0

✓
2 + P

gF mF

�2,F

+
1 � P

gF mF

�1,F

◆
. (2.1.20)

Here P
gF mF is a polarization-dependent factor, equal to 0, ⌥1 for linear and �± polarization

respectively. �1,F

, �2,F

are detunings of the D1 and D2 lines respectively. This assumes all

optical detunings are large compared with the excited state hyperfine splitting.

The dissipative component of the atom-light interaction, arising from scattering events, may

be used to determine the scattering force. Given each scattering event has a non-zero interac-

tion time, there exists some light intensity at which the upper state becomes saturated. This

saturation intensity, Is, is given by,

I

Is
=

2⌦2

�2
. (2.1.21)

Using the expression for the scattering rate in Eqn 2.1.17 and the complex atomic polaris-

ability, the scattering force is given by the time averaged scattering events and momentum kick

due to a photon interaction,

F
sc

= ~k�
sc

= ~k�
2

I/I
sat

1 + (2�/�)2 + I/I
sat

. (2.1.22)

This dissipative force is used in the early stages of most experiments to cool atoms down to
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hk
(a) (b)

Fsc

Figure 2.1.1: Basic depiction of Doppler cooling via the scattering force F
sc

. (a) Photons in-
cident on a particle are absorbed as it is excited to an intermediate state before spontaneous
emission results in decay to the ground level. The absorption cycle results in a momentum kick
in the direction of the photon before a similar, randomly orientated, kick occurs in spontaneous
emission. However as the emission, averaged over many cycles, is isotropic the net result is that
the F

sc

may be used to slow atoms.

a low temperature in additional to confining them to a small volume.

2.1.2 Doppler Cooling

Laser cooling relies on the dissipative force of the atom-light interaction that can be used to

slow atoms. This dissipative force is related to the absorption and spontaneous re-emission of

photons, known as scattering events. For a two-level atom, the absorption of photon results

in energy being transferred to the internal state as it is excited to some state. Conservation

laws require that the atoms centre of mass recoils in the direction of the photons wave vector.

Following this, the atom spontaneously decays back to the ground state emitting a photon in

some random direction resulting in a secondary momentum kick. As the re-emitted photon is

scattered in some random direction, over a large number of absorption cycles the net force from

spontaneous decay becomes isotropic, Fig (2.1.1). The result is that the atom experiences a net

overall acceleration in the direction of the photons. This is the basis for the vast majority of

common laser cooling techniques.

This is the basic mechanism for using the scattering force for cooling atoms, which was known

for quite some time. Despite this, it took several years before a stable experimental method, for

using the scattering force to contain atoms was found. However, stable trapping was observed

early for the dipole force [97]. However, many obstacles were encountered when trying to create

an environment where the scattering force could be used [98]. In particular it was realised that,

due to an optical analogy of the Earnshaw Theorem, configurations of 3D trapping, using the

dissipative force, were limited. This is similar to how a charged particle cannot be placed in

a stable orientation in a distribution of static charges. Once this was determined it became
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apparent that stable configurations could exist, yet the optical Earnshaw Theorem restricted

what could be used [99, 100]. These configurations take advantage of the atoms possessing

complex internal degrees of freedom. In particular, phenomena such as Doppler and Zeeman

shifts make atomic cooling and trapping possible.

The first proposal of a technique to effectively and isotropically cool atoms with the scattering

force was made in 1975 by two separate groups [93, 94]. This method, known today as optical

molasses, consist of three counter propagating beam pairs along orthogonal axis with an atomic

vapour about their intersection volume. By appropriately setting the detuning of the beam such

that it is red-detuned from the stationary resonance, an effective cooling force may arise. At

first glance this may not seem possible as the symmetrical arrangement has no net effect on

the atom due to equal and opposite scattering events occurring from each axis. This is only

true, however, for stationary atoms. An atomic vapour at a finite temperature has a Maxwell-

Boltzmann distribution of velocities. As such, the effect of Doppler shifts leads to an imbalance

of forces along the velocity axis.

16 Theoretical background

2.15, resulting in a total force given by

FTOT(v) = F+ + F�

= ~k
�

2

I

IS

�
1

1 + I/IS +
�
2�+

Dopp/�
�2 � 1

1 + I/IS +
�
2��

Dopp/�
�2

�
(2.16)

where the relative minus sign comes from the counterpropagating wavevectors.

To see the velocity dependence more clearly, we consider the small-velocity limit

v � �/k and expand equation 2.16 to first order in v:

FTOT(v) ⇡ 4~k2 (I/IS) (2�/�)

[1 + I/IS + (2�/�)2]2
v � ��v (2.17)

When the laser is red-detuned (� < 0), this has the form of a viscous damping

force, acting to oppose the atom’s motion and hence slowing it down, with the

analogy of movement through a viscous medium leading to the adoption of the

name optical molasses for this beam configuration. Figure 2.1 shows the form of
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Figure 2.1: Acceleration due to scattering force in a 1D MOT plotted against
atomic velocity. Curves are plotted for 87Rb with I/IS = 1 and for di�erent
laser detunings. From the innermost to the outermost curves, the detunings are:
-0.1�,-0.3�,-0.5�,-�,-2�,-3�. The red dashed lines show the separate components
of the force arising from each of the two counter-propagating beams for the case of
� = ��.

Figure 2.1.2: (a) Illustration of the velocity dependent force in a one-dimensional optical molasses.
These curves are plotted for 87Rb at saturation intensity, for a variety of different detunings. The
dashed lines show the components from each beam in the 1D molasses. Image from [80]. (b)
Diffusive nature of an atom in a 2D-optical molasses caused by the recoil of an atom from each
spontaneous emission cycle. This sets a minimum in attainable temperature for the atoms while
also preventing the technique to be utilised for trapping purposes.

To illustrate how Doppler shifts allow for cooling we consider a simplified one-dimensional

molasses with two counter-propagating, red detuned beams along the z-axis. Due to the Doppler
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effect atoms approaching a ‘red’ detuned beam will see the frequency shift towards resonance

while those moving away will be more detuned. As such the effective detuning, �
e

, of a beam is

altered by a factor ±�± depending on whether it is approaching or moving away from a beam.

As a result the effective, velocity dependant, detuning becomes,

�
e

= �+�±, (2.1.23)

�± = ⌥kv
z

, (2.1.24)

where v
z

the velocity of the atom and k the wave vector of light. As a result, as an atom

approaches a red-detuned beam the frequency moves closer to resonance increasing the chance

of a scattering event. Conversely, the co-propagating beam will be blue shifted and therefore

less scattering events will occur. As a result a recoil scattering imbalance occurs and more

momentum kicks given opposite to the atoms direction, trying to oppose its motion. Given this

is a force opposing the motion it can be considered a frictional force, F
r

, given by the sum of

the contributions from the two beams. Further by assuming kv is small compared with � we can

show:

F
r

= F+ + F� = F
sc

(�� kv
z

) � F
sc

(�+ kv
z

) = �2
�F

sc

�!
kv

z

= �↵v
z

. (2.1.25)

The new force opposes the motion of the atom, such as movement through a viscous fluid (e.g.

molasses). The dampening coefficient ↵, using Eqn. (2.1.22), is also given by,

↵ = �4~k2 (I/I
s

)(2�/�)
✓

1 + 2I/I
s

+ (2�/�)2
◆2 . (2.1.26)

Overall the net force, shown for various atomic velocities v
z

in Fig 2.1.2 (a), will cool moving

atoms that subsequently accumulate towards the centre of the trap. Unfortunately this mecha-

nism is not confining, as in addition to the dissipative force, the stochastic nature of the photon

absorption and emission cycles becomes significant. In particular it culminates in momentum

fluctuations that limit the lowest obtainable temperature due to the manifestation of a random

walk. This momentum diffusion continues until atoms leave the molasses volume, Fig 2.1.2 (b).

This limit in achievable temperature is discussed before a brief on the modifications to the basic

molasses technique required to create spatial confinement.
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Doppler Limit and Sub-Doppler cooling

The one-dimensional example, presented above, may be expanded to practicality in the labora-

tory by the addition of two further pairs of counter-propagating beams. This provides interactions

with the atomic ensemble in each direction of motion, allowing isotropic cooling. The cooling

itself is provided by the absorption-reemission cycle, previously discussed. Each remission results

in a equal but opposite momentum kick to the atom, with a recoil velocity of v
r

= ~k/m that

limits the lowest obtainable temperature, known as the Doppler limit and is given by,

k
B

T
D

=
~�
2

. (2.1.27)

For 87Rb, one of the atomic species used in our experiment, this limit is T
D

⇡ 144 µK. In-

terestingly, while this was presumed to be the lowest obtainable temperature achievable in an

optical molasses cooled cloud, early experimental results were at odds demonstrating clouds with

temperatures below the Doppler limit [96, 101, 102, 103]. This is a direct consequence of the

multiplicity of sub-levels of real atoms and their interaction with polarisation gradients of an

optical field. This multiplicity can be exploited, through a range of techniques, to routinely

create sub-Doppler cooled atomic clouds.

A brief overview of the most well known sub-Doppler cooling mechanism is presented for a

general understanding of what is achievable. This is known as Sisyphus cooling, illustrated in

Fig 2.1.3. Consider an atom, with two fine structure separated states, J = 1/2 and J 0 = 3/2, in

two counter propagating beams with orthogonal polarisation. This will cause a periodic rotation

of polarisation. This will cause atoms in each state to experience equal but opposite energy shifts,

resulting in an out-of-phase energy level field. As a result atoms in either state routinely move

up through the potential hill before undergoing an absorption cycle into the excited manifold.

The subsequent decay goes to the lowest energy level, resulting in spontaneous emission of a

higher energy photon than that absorbed. A small overall loss of energy, and thus decrease

in temperature ensues. The effect becomes cyclic as the atom continually moves through the

periodic polarisation gradient.

Remarkably, the limit of the cooling process allows the atom to cool to the recoil limit when

the energy loss being transferred to the potential minimum is balanced by the emission process.

This is the recoil energy given by

T
rec

=
(~k)2

2mk
B

. (2.1.28)
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Figure 2.2: Illustration of the polarization-gradient (Sisyphus) cooling mechanism
in the lin � lin configuration. An atom in the MJ = +1/2 state at x = 0 moves
along its potential curve until it reaches x = �/4, at which the polarization is
�� circularly polarized. The atom is excited to the |J � = 3/2, MJ = �1/2i state
and decays preferentially down to the |J = 1/2, MJ = �1/2i state via spontaneous
emission before the atom has moved a significant distance. The atom in the MJ =
�1/2 state finds itself in a potential minimum and loses energy as it scales the
potential landscape until it gets pumped back into MJ = 1/2 at x = �/2, where
the polarization is �+-polarized.

In brief, the periodic polarization gradients that arise from the interference of

counter-propagating MOT beams of di�erent polarizations1 cause a spatially-

periodic modulation of the energies of the magnetic sublevels. This periodic

potential is out of phase for di�erent sublevels, with the maxima of one level

coinciding with the minima of another. There follows a process of continuous

back-and-forth optical pumping between the sublevels, with atoms at a poten-

tial peak absorbing a circularly-polarized photon and spontaneously emitting a

higher-energy photon in order to decay to a lower-lying sublevel. The atom in

this lower sublevel then continues moving until it reaches the next maximum in

its potential and gets transferred back to the original state, which is now the

lower-lying of the two. The name given to this mechanism refers to the fact that

the atom continually finds itself ascending the potential landscape, only to be

1 Most examples consider two beams linearly-polarized along orthogonal directions (the lin
� lin configuration) but the e�ect is also present for two circularly-polarized beams of
opposing handedness (the �+ � �� configuration).

Figure 2.1.3: Left - Illustration of the Sisyphus sub-Doppler cooling mechanism. As an atom in
the M

J

= 1/2 state moves along the potential curve it experiences a periodic shift in its energy
level reaching a maximum when light is �� polarised. At this point the atom is excited into the
J 0 = 3/2 state before spontaneous decay into the m

J

= �1/2 state, preferentially. This state
lays at a lower energy and subsequently the atom must loss some kinetic energy to emit the
photon. This process become cyclic as the atom climbs to a maxima at �+ polarised light before
the absorption-emission process puts it back into the m

J

= 1/2 state. Image taken from [80].

Similar mechanisms exist for other polarisation combinations and the interested reader is

directed to Ref [96].

2.1.3 Magneto-Optical Trap

While the optical molasses technique is capable of cooling an atomic cloud, the stochastic nature

of the method allows them to leave the beam intersection volume. As a result three orthogonal

beam pairs do not constitute a trap. Confinement is obtained by creating a spatially-dependant

restoration force that continues to force atoms to the centre. This may be done by application

of a spatially varying magnetic field and appropriately configuring the polarisation of the optical

molasses beams, exploiting Zeeman shifts of atomic sub levels. In doing so we can create a

magneto-optical trap (MOT), a technique developed in 1987 [104], a staple for modern cold atom

experiments. The simplest MOT is formed by the overlap of a spherical magnetic quadrupole

field with the molasses field. This provides a linearly increasing magnetic field extending from

the centre of cooling region to the edge of the coils. This may be provided by a single pair of

coils with counter-propagating currents, shown in Fig (2.1.4). The difference between the pure
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optical molasses is that the application of a magnetic field enables spatial confinement due to

the exploitation of Zeeman shifts of an atoms magnetic sub levels, section 2.3.18 Theoretical Background
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Figure 2.6: Spherical quadrupole MOT configuration and hyperfine transitions. (a) Standard
configuration consisting anti-helmholtz current loops and three orthogonally arranged counter prop-
agating beam pairs, each �+�� configured. Six yellow particles in the |5S1/2, f = �2i state are
represented on the blue magnetic field line cross-section. Green arrows representing the atomic
magnetic moments are all locally anti aligned with the magnetic field, representing the locally de-
fined |mF = �2i substate. Notice that contrary to the magnetic quantisation convention, states are
here defined relative the central coordinate axis. Hence although adiabatic motion across the trap
would preserve the local orientation, relative the coordinate system magnetic moments revolve. (b)
Zeeman shifted substate energies consistent with the Breit-Rabi formulae and the numeric deriva-
tion of [20]. Bold lines represent the transition states which, by the global quantisation convention,
are represented with the opposite sign for z < 0. Since the global polarisation of optical fields is
conversely fixed, each beam only interacts with particles displaced & moving toward them.

2.3.4 MOT Loading

Increasing the number of particles within the final condensate requires greater initial loading,
reduced loss time, or a reduction in loss rate. The later will be considered here. Follow-
ing from section 2.1.3, single-body background collisional loses contribute most strongly,
thereby motivating ultra-high vacuum conditions. However, since conventional MOT load
directly from a thermal vapour, much higher pressures are initially require to prevent a re-
duction in loading. Consequently for UHV conditions, the surrounding chamber requires
rapid evacuation each cycle following the MOT load. While representing a great strain on
the pumping system, shortening the operational life, practically the desired pressures cannot
typically be obtained within characteristic cycle times. The solution is to employ an alter-
native load mechanism which enables UHV conditions to be constantly maintained. Atomic
beam loading satisfies this criteria. From an adjacent chamber with independent pressure,
atoms beams may be collimated through a narrow feedthrough to load MOT under UHV
conditions. To produce such a beam, a number of technologies have been developed, includ-
ing the Zeeman Slower [83] and Low-Velocity Intense Source (LVIS). For the present work
however, the descendant 2D+MOT system will be employed [84] (figure 2.7). To model this
process for diagonstic purposes, consider the rate equation 2.9. For typical load densities

Figure 2.1.4: Illustration of a magneto-optical trap with anti-Helmholtz configuration coils. This
results in a spherical quadrupole, producing a linear splitting of Zeeman sub levels used to confine
atoms to the molasses volume. Via the appropriate polarisation of the incident beams the atoms
may be trapped at the centre. Image reproduced from [116]

Considering, once again for simplicity, the one-dimensional case, with the upper energy man-

ifold split into three Zeeman sub-levels, m
F

= �1, 0, +1, by application of the magnetic field.

As atoms move from the centre of the trap the m
F

= ±1 is brought closer to resonance, as the

Zeeman field shift increases with increasing magnetic field. Optical transition laws dictate that

atoms from the lower manifold, m
F

= 0, may only make transitions m
F

= ±1 contingent on the

interacting beams polarisation �±. As a result of the Zeeman shift, and its spatial dependence,

atoms then exhibit a spatial dependence on the likelihood of an absorption event occurring that

serves to localise a vapour towards the centre. This is to say; atoms further from the centre of

the trap preferentially absorb photons compared to those, which are localised about this centre,

resulting in a spatial restoring force. This trapping configuration is common for ultra cold atomic

gases as it may readily create large MOTs, with > 109 atoms [105, 106, 107], at low temperatures.

When considering real atoms the existence of multiplicity, of the atomic sub-levels, brings other

considerations when trying to trap and cool atomic gases.
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Figure 2.2.1: Atomic level diagrams for 87Rb and the stable bosonic isotopes of potassium.
Abundances are listed below the isotope name and �1 and �2 are the frequency detunings for
the repumping and cooling transition respectively. The energy level gaps are not to scale and
exacerbated for clarity.

2.2 87Rb and 41K

While the previous section allows for a good qualitative analysis, and proposal, for the basis of

laser cooling and trapping techniques, real atoms possesses much more complicated electronic

level structures, consisting of multiple ground and excited states as well as decay paths. Appli-

cation of the general principles of dissipative cooling, presented here is complicated by this fact.

Fortunately the alkali atoms of interest, 87Rb and 41K, have a single valence electron that allows

the cooling process, reliant on the continuation of absorption-reemission cycles, to be simplified.

In this section a description of the multi-level structure of the two atoms is presented to elucidate

the operating principles of the 3D MOT.

Here we are concerned with the electronic level structure, which defines the laser frequency

requirements of our system, the bosonic isotope of rubidium, 87Rb, and potassium, 41K, respec-

tively. Both these atoms possess suitable transitions for cooling and trapping in the D2 level

structure. With regards to rubidium this is between the 52S1/2 ground state and 52P3/2 excited

state, while for potassium it is the 42S1/2 and 42P3/2 Fig 2.2.1 shows that the level structure

for the two elements are similar, due to the fact they both have nuclear spin I = 3/2. The D2
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Figure 2.2.2: Illustration of the trapping mechanism for a MOT. As atoms move from the trap
centre in the z = ± direction the m

F

= ± energy levels shift due to the Zeeman effect. As such
atoms that move from the trap centre preferentially absorb photons from the counter-propagating
beam that enable only a transition to the closer on-resonance sub-level. The net result is a spatial
active restoring force from the optical molasses.

line links four hyperfine P states to two low-lying S states. The selection rules lead to the same

allowed hyperfine transitions for both atoms. The natural linewidth is � = 6.0 MHz for 87Rb

and 6.2 MHz for 41K.

The cooling transition for both atoms is the |F = 2i to |F 0 = 3i, being the only, nearly, closed

transition in the D2 structure. This constitutes the cycling transition used in laser cooling, with

saturation intensities of ' 1.7 mW cm�2 [108]. Nevertheless, the presence of additional states in

the lower fine structure manifold disrupts the possibility of cooling and trapping with a single

frequency source. The existence of off-resonance contributions, from the |F = 2i to |F 0 = 2i and

|F = 2i to |F 0 = 1i, acts to readily deplete the starting |F = 2i level, filling the |F = 1i level.

This may be mitigated through the use of what is known as repumping light. A beam red detuned

of the |F = 1i to |F 0 = 2i transition, may irradiate the atoms causing those that fall into the

|F = 1i state to be re-pumped back onto the cooling transition. Usually, for alkali atoms such as

rubidium, these off-resonance effects are minimal and only a small amount of power is required for

the repumping beam. Unfortunately this is not the case for bosonic potassium, where the tight

hyperfine 42P3/2 level spacing is comparable to the natural linewidth, � = 6.2 MHz. The cooling

transition, |F = 2i to F 0 = 3i is not closed and excites into the |F 0 = 1, 2i states with similar

probability. Thus a repump power comparable to the cooling is required else fast depletion of the

|F = 2i ground state, towards the |F = 1i, ensues. Given the comparability of the transitions

the distinction between cooling and repumping beams is mostly semantic, but is kept for clarity
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when discussing the laser sources for cooling and trapping the atoms. The repump and cooling

transitions are shown by red and blue arrows in Fig. 2.2.1 respectively. Furthermore in order to

do any quantitative analysis an imaging beam is required. This is achieved using light resonant

with the cooling transition.

Other complications arise when attempting to cool bosonic potassium, as a delicate balance

between having a large capture volume and ability for sub-Doppler cooling exists. Due to the

small separation of energy levels, cooling is only efficient when the detuning clears the entirety of

the upper manifold [77, 109, 79]. It has been shown that the largest capture velocity is achieved

when the cooling and repump beams are red-detuned from the entire excited-manifold, as per

Fig 2.2.1. Consequently the large detunings does not produce effective sub-Doppler cooling forces

and temperatures are expected to be on the order of mK [110, 111, 112]. One technique to achieve

sub-Doppler temperatures, of these types of isotopes, is to perform standard Doppler cooling

techniques first before reducing the cooling and repump beams detuning and varying the intensity

significantly to counter-balance the heating mechanisms. Using this strategy temperatures on

the order of tens of µK have been reported by two groups [113, 114].
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2.3 Magnetic Trapping

While MOTs and sub-Doppler cooling provide a method for trapping atomic vapour, their tem-

perature and volume are several orders of magnitude larger than that required for observation of

condensation [43]. In order to further increase the atomic gas density, and enable cooling beyond

the Doppler limit, magnetic traps may be used to provide a conservative potential. These do

not rely on photon absorption re-emission cycles. Discussed in this section is the interaction

that atoms, with non-zero magnetic dipole moment, have with an applied magnetic field. In

the experiment presented here, the magnetic trap plays a pivotal role in trapping, moving and

further cooling of our atomic clouds.

2.3.1 Atom Interactions in a Magnetic Field

The energy shift experienced by an atom in the presence of a magnetic field, B, is given by:

H
b

=
µ

B

~ (g
s

S
z

+ g
L

L
z

+ g
I

I
z

)B
z

. (2.3.1)

With B
z

the field along the z (quantisation) axis, S
z

, L
z

, I
z

the operators for the z-components

of the spin, orbital and nuclear angular momenta respectively, and g
s

, g
L

, g
I

are the Landè g-

factors. When this energy shift is small compared to the hyperfine splitting, F = I + S + L and

m
F

are good quantum numbers. As a result, eqn (2.3.1) may be written as,

H
b
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F

µ
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m
F
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z

. (2.3.2)

The resulting Zeeman energy shift is therefore non-zero and linear with field strength, given as

U(r) = �µF · B(r) = µ
B

g
F

m
F

B
z

. (2.3.3)

The force on an atom, F (r), in the magnetic potential is therefore given by:

F (r) = �rU(r) = �µ
B

g
F

m
F

rB
z

. (2.3.4)

According to equation (2.3.4) that, depending on the sign of the product g
F

m
F

, atoms will

minimise their total energy by moving to regions of lower, or higher magnetic field. The states

for which g
F

m
F

> 0 are called low-field seeking states and are magnetically trappable as sta-
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For many practical purposes it is fortunately su�cient to perturbtively treat either HB or H�
B

by selecting the appropriate corresponding free space hamiltonian H0. In the weak and strong
field case respectively, this approach derives the Anomalous Zeeman and Paschen-Bach ef-
fects, as they are historically known. Analytic treatment of intermediate field strengths is
however in general prohibitively di�cult. Instead numeric techniques are necessary to diag-
onalise the full hamiltonian [20]. For states with spherically symmetric charge distributions
however, the Breit-Rabi solution may be analytically derived [25, 35]. Since the 87Rb ground
states have spherical symmetry, the analytic solutions are illustrated in figure 2.2, where Ehfs

represents the zero field hyperfine ground state energy separation. From this picture, two
points will be of later significance. Firstly, since the energy di�erence between levels is field
dependant, the resonant frequency of atoms through non-uniform fields may be spatially
dependant. Secondly, the Zeeman interaction constitutes a conservative potential which, for
select states, may impart restoring force F.

F(B) = �rHB (2.12)

While the force magnitude is field gradient dependant, the magnetic quantum number mF

determines the direction. Each state may therefore be classified as either High or Low-Field
Seeking. Since field minima but not maxima may be generated in current-free space, only low
field seeking states may be magnetically confined [36]. Hence of the eight ground substates,
only |f, mF i = |1, �1i, |2, 1i, |2, 2i are magnetically trappable.
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Figure 2.2: Breit-Rabi solutions for the 87Rb hyperfine ground state Zeeman shifts. The
magnetically induced energy shifts represented here importantly facilitate stable Magneto-Optical
and pure Magnetic confinement. For the later, only low-field seeking states whose energy increases
with field strength are magnetically trappable. Since |f = 2, mF = 2i experiences the greatest
increase it facilitates the strongest confinement. However |1, �1i is frequently used instead due to
favourable scattering properties.

Figure 2.3.1: Breit-Rabi diagram for the energy level structure, E
mF /E

hfs

of 87Rb ground
state Zeeman shifts. Magnetically trappable states for both 87Rb and 41K are the|F, m

F

i =
|1, �1i, |2, 1i and |2, 2i states respectively. Image courtesy of [116].

ble configurations for local minima are possible. However, local maxima are not possible and

high-field seeking atoms cannot be trapped by some static magnetic field. This is important

when trying to load a magnetic trap from a 3D-MOT as the atoms have a distribution of sub-

atomic states and cannot all be trapped. Magnetically trappable states of 87Rb and 41K are the

|F, m
F

i = |1, �1i, |2, 1i and |2, 2i states.

This treatment breaks down when the magnetic field applied becomes sufficiently large and

the total electron µJ and nuclear µI moment independently couple to it. The internal coupling

is then treated as a perturbation to the interaction of the field with these independent moments.

An analytical result exists for energy states belonging to the lower manifold of our atoms, i.e.

L = 0, J � 1/2, in the form the Breit-Rabi formula [115], solutions shown for 87Rb in Fig 2.3.1.

These solutions are useful in the calibration of magnetic fields to access Feshbach resonances and

better understanding effective field strength.

2.3.2 The Quadrupole Field

The simplest arrangement of electromagnetic coils, that provides a potential for holding low-

field seeking atoms is the anti-Helmholtz configuration, consisting of two coils carrying current

in opposite directions, Fig. (2.3.2) (a). This simple field also creates the linearly varying field
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Figure 2.3.2: (a) Pair of coils in anti-Helmholtz configuration. The black arrows indicate the
direction of current and (b) showing the field produced in the axial (z) and radial (y) direction.
At the centre is a minima, representing the centre of a magnetic trap for low-field seeking atoms,
linearly increasing with distance away.

required for the successful operation of the 3D-MOT. A single coil with current running through

it has a field along the axial, B
z

, and radial, B
r

, directions given by,

B
z

=
µ0I

2⇡
p

z2 + (a + r)2

✓
a2 � z2 � r2

z2 + (r � a)2
E2(k

2) + E1(k
2)

◆
(2.3.5)

B
r

=
µ0zI

2⇡r
p

z2 + (a + r)2

✓
a2 + z2 + r2

z2 + (r � a)2
E2(k

2) � E1(k
2)

◆
. (2.3.6)

Where z and r is the axial and radial distance from the centre axis of the coil, a the radius

of the coil, k2 = 4ra

z

2+(a+r)2 and E1(k) and E2(k) the complete elliptic integrals of the first and

second kind respectively. The total field strength is given by |B|2 = B2
z

+ B2
r

. These equations

are especially important when trying to design high quality coils for trapping, transferring and

producing bias fields. The field produced at the ‘trapping’ region of a pair of anti-Helmholtz

coils is given, to a first order, by:

B = B0(
x

2
ê

x

+
y

2
ê

y

+ zê
z

). (2.3.7)

The resulting field has a zero at the centre point between the two coils with the field strength

increasing linearly with increasing distance from the centre, Fig. (2.3.2) (b). It is important to

appreciate that the strength along the axial, z, direction is twice that in the radial. In a 3D-

MOT, only a small magnetic field gradient, ⇡ 12 G cm�1, is required to provide an appropriate
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restoring force in combination of the optical molasses. However, when transferred into a magnetic

trap the field depth must be sufficient to hold the cloud against gravity. This is ⇡ 31 G cm�1 for
87Rb, however a steeper trap is desirable as it is more resistant to sources of heating, preventing

rapid depletion of the ensemble. Here we trap at gradients of B0
z

= (100, 160) G/cm depending

on which region of the experiment the cloud resides.

2.3.3 Majorana Losses

The final stage toward quantum degeneracy, following appropriate Doppler cooling and trapping

in a conservative potential, is evaporative cooling, section 2.5. This serves to cool atoms down to

the nK regime, required to observe the transition to BEC [117, 118, 119]. Within a quadrupole

field an atom’s magnetic dipole moment precesses about the local external magnetic field at

the Larmor frequency, !
L

= µB/~. Provided the field direction changes slowly, with respect to

the Larmor frequency, the moment will adiabatically follow the direction and remain within its

trappable state. The specific criterion to satisfy this is,

1

!
L

v · rB

B
<< 1. (2.3.8)

What may be noted is that as the magnetic field approaches zero the adiabaticity criterion

above may be violated. This may occur for atoms near a magnetic zero field at low temperature

and thus spend a large amount of time near this point. As a result an atom may exhibit a

transition to a different m
F

state which is untrappable, and will be lost. These losses are known

as Majorana spin-flips [120] and the limiting factor of the simple quadrupole field as temperatures

approaching degeneracy are reached. Furthermore, the loss of cold atoms and rethermalisation

of the remainder may result in an acute heating that prevents the Bose Einstein condensation

transition from occurring [121].

Several methods exist to counteract these losses, the primary being the design of potentials with

non-zero minima. Purely magnetic solutions, such as Ioffe-Pritchard and time-orbiting potential

(TOP) traps, have been successful [122, 123, 124, 125]. Other options are the transfer to a

purely optical potential where the spin-flips are no longer relevant [119, 126]. These optical

potentials have very fast duty cycles but suffer from poor loading due to poor spatial mode

matching between dipole trap and quadrupole traps. A final solution is a hybrid technique

utilised in many modern experiments [127, 128] where the combination of magnetic and optical

trap prevent Majorana losses becoming an issue during the evaporation stage towards degeneracy.



32 CHAPTER 2. LASER COOLING, MAGNETIC TRAPPING AND EVAPORATION

This last method is the one we have chosen to utilise in our experiment.
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Figure 3.8: Beam profile of a focused Gaussian laser beam. The smallest radius w0

is at the focus of the beam. At the distance of the Rayleigh length zR the area of the

beam is twice as big as in the focus.

where zR = �w2
0� denotes the Rayleigh length and w0 the smallest waist of the beam

at the focus of the beam. It is also the place, where we define the depth of the trap

U0 = U(r = 0, z = 0). The dipole potential of neutral atoms in a focused Gaussian

laser beam is well approximated with a Taylor series if the kinetic energy kBT of the

atomic ensemble is much smaller than the depth of the trap. Truncating the series

for higher orders than two, yields the harmonic approximation and we find for the

optical dipole potential the simple expression

U(r, z) = �U0

�
1 � 2

✓
r

w0

◆2

�
✓

z

zR

◆2
�

. (3.25)

At the bottom of the trap the atoms oscillate with frequencies

�r =

s
4U0

mw2
0

(3.26)

�z =

s
2U0

mz2
R

(3.27)

Figure 2.4.1: Beam profile of a focused Gaussian laser beam. The radius of the beam at the
focus is given by w0 the Rayleigh length determined by the distance it takes for the beam to
expand to

p
2w0, taken from [130].

2.4 Neutral Atoms in a Focused Gaussian Beam

Our discussion has mostly centred about the use of the scattering component of atom-light

interactions and less concerned with the dipole force. Of most significance, for this experiment,

is the effect of the dipole force for atoms residing about the focus of Gaussian beam. A focused

laser beam, Fig (2.4.1), with power P propagating along the z-axis is described to have an

intensity profile given by,

I(p, z) =
P

⇡w(z)2
e
� 2p2

w(z)2 . (2.4.1)

With radial coordinate p and the radius of the beam w when the beam intensity is 1/e2 of the

maximum, in the radial direction.

w(z) = w0

p
1 + (z/z

R

)2. (2.4.2)

Where z
R

= ⇡w2
0/� denotes the Rayleigh length and w0 the smallest waist of the beam, at

the focus. This focal point is also the trapping region of the beam, as trap depth is greatest

here, occurring when U0=U(0, 0). The dipole potential of neutral atoms may be approximated

with a Taylor series if the kinetic energy, k
B

T , of the atomic ensemble is much smaller than the

depth of the trap. We may truncate the series at orders higher than two and gain the harmonic
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approximation,

U(p, z) = �U0

✓
1 � 2

✓
p

!0

◆2

�
✓

z

z
R

◆2◆
. (2.4.3)

Quantifying the trap by its harmonic trapping frequencies,

!
p

=

s
4U0

m!2
0

(2.4.4)

!
z

=

s
2U0

mz2
R

, (2.4.5)

along the radial and axial directions, where m is the mass of the atom. The geometry of the

trap is determined by looking at the aspect ratio between the axial and propagation axis, given

by the ratio of the radial to axial frequencies trapping frequencies,

w
p

w
z

=
p

2
z
R

w0
=

p
2
⇡w0

�
. (2.4.6)

Therefore, in general, the optical confinement of a single beam is stronger along the radial

direction and weaker along the axial. This is important when making a single beam dipole trap

as if the Rayleigh range is too great then the weak confinement may not be sufficient for trapping

purposes.

With any trapping potential, the effect of gravity can greatly influence the geometry. In

particular, assuming gravity along the axial direction of a single dipole beam, the acceleration

of g = 9.81 m/s2 causes an additional linear potential along its direction. This effect is not

normally negligible unless U0 >> mgz. For shallower traps, such as when optical evaporation

is performed, an anharmonicity exists and gravity may begin to dominate. An example, of the

effect of gravity, is shown in Fig (2.4.2). This is significant to be aware of as atoms may routinely

‘fall’ out of the trap as their own energy plus the effect due to gravity may exceed the potential

depth. The effective trap depth, accounting for this effect, is given by the potential minimum

which is shifted from origin by:

Ueff,z = mgz + I(0, z). (2.4.7)

It is also convenient to refer to the potential depth by an equivalent temperature, for comparison

with atom gas temperatures, given by U0/k
B

. The usefulness of this picture is that atoms that

are hotter than this depth cannot be trapped. Interestingly to note is that the scattering rate is

proportional to I(p, z)/�2, while the trap depth goes with I(p, z)/�. As a result if the detuning
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Figure 2.4.2: (a) Optical dipole potential without gravity, demonstrating symmetry about the
centre. (b) Shows what occurs when gravity is no longer negligible. A skew of the trap occurs
resulting in an asymmetry in the trap, which will be reflected in absorption images of an atomic
ensemble. Image courtesy of [130].

of the trapping beam is far from resonance then the trap can be considered purely conservative.

In practice background losses remove atoms from the trap prior to spontaneous emission induced

losses become significant.

2.4.1 Decay, Parametric Heating and Losses

Precise knowledge of the trapping frequencies, allowing precise calculations of the Rayleigh length

and w0, is important when performing analysis on atoms in a dipole trap. These may be deter-

mined via parametric heating, by modulating the power of the trapping beam, at some frequency

v. Due to the modulation atoms will be heated, and subsequently lost from the trap, when

v = 2!
i

, with i = p, z. This is also significant, as any noise on the trapping beam-matching v

will cause atom number losses.

With a far-detuned beam, the atomic losses from light scattering events are negligible in

comparison to other losses. The most significant of these are collision events, with background

atoms determining the life time in the trap. One source of losses are collisions of trapped atoms

with background vapour. This may be minimised by producing a low-vacuum environment,

where the background vapour pressure is very low. As densities increase three body losses must

also be taken into account. In this scenario, a molecule is formed between two atoms and the

binding energy is transferred to a third. This also serves to rapidly deplete the number of confined

atoms.
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Figure 2.5.1: Evaporative cooling principle. Lowering the trap depth from some initial thermal
distribution, hT i = T0 results in a truncation of trappable energies E. As a result the high-
energy tail atoms are selectively removed and the remainder atoms re-equilibrates via collisions
to a lower temperature T

f

.

2.5 Evaporative Cooling

Laser cooling afforded physicists the ability to trap large samples of atoms at low temperatures

and high density. The limit of the technique however, is that the temperature and density

achieved in a conventional MOT does not have a phase-space density (PSD) high enough for the

onset of condensation. Typically they are on the order of ⇢ ⇡ 10�6 when in a MOT. This is

several orders of magnitude lower than that required for the onset of condensation ⇢ ⇡ 2. To

achieve this we can make use of evaporative cooling processes, a pioneering method for creating

atomic clouds with high phase space densities [131].

Evaporative cooling is well understood conceptually. By selectively, and gradually, ejecting

atoms from the edges of thermal distribution, remaining atoms may rethermalise via elastic two-

body collisions. The net result is a lower equilibrium temperature, Fig. (2.5.1). The process itself

amounts to truncating the trap depth, with a ‘knife’ energy, generally expressed as a multiple,

⌘, of the cloud’s temperature T ,

vknife = ⌘k
B

T. (2.5.1)
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2.5.1 Microwave and Optical Evaporation

Several techniques for evaporative cooling, of atomic species, are available, with the elected

method dependent on what is required. In this experiment two separate evaporative cooling

methods are used to produce BECs of 87Rb. Initially, microwave evaporation is used to prepare

atomic clouds for loading into a hybrid trap. This is followed by optical evaporation until a

condensate is formed. Microwave evaporation, used only on 87Rb, relies on the spatially-varying

Zeeman shift in a magnetic trap. Intuitively, atoms with higher energy spend more time away

from the trap centre. At the wings of the magnetic trap a large detuning of their hyperfine ground

states is present, ⇡ 6.834 GHz in absence of an external field. As a result, a particular microwave

energy class is directly related to a certain spatial position in the trap these may removed from

the trap to aid in evaporatively cooling the remainder of the gases. Our initial evaporative

stage induces transitions from the trapped |1, �1i state to the untrappable |2, �1i manifold by

sweeping the microwave frequency of radiation to selectively remove the most energetic atoms.

In particular, a cloud may be irradiated by microwave radiation whose frequency is selected to

only interact with the hottest of atoms. These are ejected from the trap and the remainder

rethermalise to a cooler temperature. Care is required as if the ramp is executed too fast the

sample has little time to rethermalise and additional atoms will be expelled before the cloud

has equilibrated to a lower temperature. Following microwave evaporation the cloud is loaded

into an optical dipole trap where another stage of evaporative cooling occurs in order to produce

a BEC. The principle behind optical evaporation is the same. By lowering the power in the

dipole trap the trap depth is reduced and the more energetic atoms able to leave the trap.

The remainder rethermalise to a lower temperature and the process can continue. Both these

techniques are utilised within the experiment and addressed in greater detail in the relevant

experimental chapters.

2.5.2 Efficiency

The figure of merit for the efficiency of evaporative cooling is the logarithmic derivative of the

gain in phase space density, ⇢, to the change in atom number, N . This is given by:

� = � d ln⇢
d (lnN)

. (2.5.2)
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In an ideal scenario, where trap losses are wholly quantified by the evaporative procedure, the

optimal rate for evaporative cooling is set by the initial temperature and by elastic collisional rate,

�
el

= 1/⌧
el

. In reality, however, background losses are present due to collisions with untrapped

atoms, while three-body losses at a rate �
loss

= 1/⌧
loss

tend to oppose a rise in phase space

density.

Thus, optimal cooling is a process by which � is maximised, determined by the truncation

factor ⌘ while also balancing the speed at which cooling occurs. In essence this is the optimisation

of the ratio ⌧
loss

/⌧
el

where the atoms should equilibrate as fast as possible compared to the rate

at which they are lost from the trap. Generally these values are empirically found as background

losses are highly experiment specific.

2.5.3 Sympathetic Cooling

Occasionally the direct evaporation of an atomic species is not desirable for cooling an ensemble.

In the case of potassium the low natural abundance of 41K leads to smaller atom numbers in

a 3D MOT [68] making it inefficient for creating BECs as evaporative techniques incur large

atom number losses. However, sympathetic cooling may be used to reduce the temperature of

the 41K component by using the rubidium cloud as a reservoir, or buffer gas, that acts as a

coolant. Similar to regular refrigeration techniques, the temperature of a target gas is reduced

by thermalisation with the reservoir.
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2.6 Bose-Einstein Condensates

In this section, theoretical foundations of single species Bose-Einstein condensed (BEC) gases

are discussed. In particular, the quantum-mechanical behaviour of ultra cold bosonic gases is

discussed. This state of matter gives unique opportunities to study a variety of quantum effects

on a macroscopic scale. These systems benefit from the large amount of intrinsic system control

and control over atomic interactions, which can be advantageous when compared with other

superfluid or superconductor systems.

2.6.1 Introduction

The rigorous theory of Bose-Einstein condensation in an ideal, interacting, zero and finite tem-

perature gases has been discussed, in numerous review articles [132, 133], books [43] and theses.

As such, for brevity, overviews of the main results that are relevant to our system are presented

here.

A Bose-Einstein condensate (BEC) is a phase transition which relies on the indistinguishably

of particles, composing an atomic ensemble. A description therefore needs to be treated with

a quantum mechanical approach. The first prediction of this phenomenon was for photons, by

Satyendra Nath Bose in 1924 [134], and generalised to encapsulate all bosons, by Einstein, the

following year starting from studies on black body radiation [135] . Classically, the behaviour of

a bosonic gas is determined by the Maxwell-Boltzmann distribution. In ordinary gases, indepen-

dently of fermionic or bosonic nature, thermal energy k
B

T is much higher than the energy level

spacing of the system. A smooth distribution of state occupation is realised and no quantum

exchange phenomena is relevant. This is not an accurate description, however, when a significant

number of particles occupy the ground state.

2.6.2 Uniform Ideal Bose Gas

The mean occupation of single-particle states, n, for non-interacting bosons in thermal equilib-

rium is given by the Bose-Einstein distribution as,

f(✏
n

) =
1

exp

(✏

n

� µ)/k
B

T

�
� 1

. (2.6.1)
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Where ✏
n

is the energy of the n-th state and µ the chemical potential, which is set by particle

number conservation. From this, the total number of particles may be evaluated by,

N =
X

n

f(✏
n

). (2.6.2)

Importantly, the Bose-Einstein distribution also imposes the constraint µ < ✏0 for an ideal gas,

lest a negative occupancy is observed. As µ approaches the energy level of the ground state the

occupation of this level becomes equal to,

N0 = f(✏0) =
1

exp
✓

(✏0 � µ)/k
B

T

◆
� 1

, (2.6.3)

which is large and comparable to the total number. This is the mechanism behind the phase

transition to a degenerate quantum gas under specific conditions, discussed in the following

section.

2.6.3 Semi-classical approximation

Treating the ground state as a special case, the total number of atoms in an ensemble, may be

given by,

N = N0 + N
T

, (2.6.4)

where N
T

is the number of atoms in excited (thermal) states. Generally, calculating N
T

is

non-trivial, however, if we assume that thermal energy, k
B

T , is larger than the energy level

spacing of the system, the summation over discrete states for thermal atoms may be replaced by

a continuous integral over the density of states ⇢(✏). Integrating over the entire phase space, the

total thermal number of atoms may be given by,

N
T

=
1

(2⇡~)3

Z Z
1

exp

(✏(r,p) � µ)/k

B

T

�
� 1

dpdr. (2.6.5)

Here the discrete energy levels, ✏
n

, have been replaced by the continuous variable ✏(r,p) depen-

dant on position r and momentum p. For a gas in a box, ✏(r,p) is p2/2m and the position

integral may be given by the volume of the containing box, such that
R

dr = V . This may then
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be evaluated to calculate the number density, n
T

, as a function of µ.

n
T

=
N

T

V
=

1

(2⇡~)3

Z 1

0

1

exp

(p2/2m � µ)/k

B

T

�
� 1

4⇡p2dp =
1

�3
T

g3/2


exp(µ/k

B

T )

�
, (2.6.6)

where �
T

=
q

2⇡~2

mkBT

is thermal de Broglie wavelength. g3/2(z) is the 3/2 polylogarithmic

function. This is positive and indicates that thermal atom density increases with increasing µ.

However there is a limit, from the constraint µ < ✏
o

, for a trapped particle. This implies that,

as N increases, the available excited states become saturated at some critical density, n
c

which

is given by,

n
c

=
N

c

V
=
⇣(3/2)

�3
T

. (2.6.7)

Here, ⇣(z) is the Reimann zeta function. All other atoms occupy the ground state, resulting in

the observation of the BEC transition. The factor, n�3
T

is known as the phase space density of

an atomic sample and the target of ⇣(3/2) ⇡ 2.612, as given by Einstein’s theory, useful for the

pioneering experiments aimed to realise this state. Eqn 2.6.7 may be reformulated, using the

expression for de Broglie wavelength, to find the critical temperature for a given atomic density

as to begin the transition,

k
B

T
c

=
2⇡~2

m

✓
n

⇣(3/2)

◆
. (2.6.8)

Experimentally, systems are typically trapped in non-homogenous harmonic potentials such that,

V (r) =
1

2
m(!2

x

x2 + !2
y

y2 + !2
z

z2). (2.6.9)

This equation describes a harmonic potential with trapping frequencies !
i

= 2⇡⌫
i

and the new

trapping potential results in a new critical density. This critical density is given by,

n
c

(r) =
1

�3
T

g3/2


exp

✓
� 1

2

⇢
x2

R2
x

+
y2

R2
y

+
z2

R2
z

�◆�
. (2.6.10)

The characteristic widths of this distribution, R
i

=
p

k
B

T/m!2
i

, are known as thermal radii and

indicates the extent of a thermal cloud, for a given temperature. The critical number is then

found by performing an integral over the volume of the trap,

N
c

= ⇣(3)

✓
k

B

T

~!̄

◆3

. (2.6.11)
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Figure 2.6.1: Plot of the condensate fraction for an arbitrary atomic sample showing differences
in the homogenous and harmonic systems as a fraction of critical temperature.

With !̄ = (!
x

!
y

!
z

)1/3 the geometric mean trapping frequency. Similarly the critical point may

be discussed in terms of a critical temperature T
c

for a given atom number as,

k
B

T
c

= ~!̄
✓

N

⇣(3)

◆1/3

. (2.6.12)

Using Eqn. (2.6.4) and Eqn. (2.6.12) the condensed fraction of an ideal atomic sample in a

harmonic trap as a function of temperature may be given by,

N0

N
= 1 �

✓
T

T
c

◆3

(2.6.13)

shown in Fig 2.6.1 compared to an expectation in a homogenous confinement, which has a 3/2

dependence.

2.6.4 The Bose-Einstein Condensate

The preceding section is an adequate description of thermal atoms of an ideal gas below the

critical temperature but knowledge on the distribution and interactions of a condensate is more

relevant to the experiment at hand. We first discuss the ideal (non-interacting) condensate,

followed by the discussion of repulsive and attractive interactions and lastly briefly discuss dual
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species BECs.

Non-interacting Bose Gas

Considering the Bogoliubov approximation, we may treat a condensed Bose Gas as a classical

field for which  0 =
p

N0�0, where �0 is the single-particle ground state wave function of the

system. This is a solution to the Schrödinger equation,

✓
� ~2r2

2m
+ V (r)

◆
 0(r) = µ 0(r). (2.6.14)

Where µ replaces the usual energy term as the number of particles remains constant. For a

harmonic potential, this is readily solved and yields a Gaussian wave function,

 0(r) =

p
N0

⇡3/4ā3/2
exp

✓
� 1

2

⇢
x2

a2
x

+
y2

a2
y

+
z2

a2
z

�◆
(2.6.15)

where a
i

=
p

~/m!
i

is the oscillator length along the i axis and ā the geometric mean. The

condensate density may then be directly calculated via,

n0(r) = | 0(r)|2 =
N0

⇡3/2ā3
exp

✓
�

⇢
x2

a2
x

+
y2

a2
y

+
z2

a2
z

�◆
. (2.6.16)

Of particular significance, with this distribution equation, is that the characteristic length scale

for an ideal condensate, ā, differs from the length scale of a thermal cloud, R̄. In particular,

thermal cloud radii are a factor of (⇣(3)/N
c

)1/6 larger than the condensate. As a result, the spatial

extent of the condensate is less than that of thermal cloud, yet can contain comparable numbers

to the thermal component. When observing the BEC transition the two profiles are distinctly

viewable in time-of-flight imaging, making it a useful element for quantifying the transition.

Interacting Bose Gas

While the presence of atomic interactions does complicate theory, it gives a wealth of potential

applications for realising interesting phenomena in ultra cold atomic systems. Atoms in optical

lattices, for example, may exploit the atomic interactions to transition from a superfluid to Mott

insulator [35]. This is ideal for studying the dynamics of phase transitions and as a test bed for

emulation of a variety of many-body system [132].

Consider N interacting atoms confined to a harmonic potential, V
ext

, of the form given by
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Eqn. (2.6.9). Using the second quantisation formalism, whereby many-body states are repre-

sented in the Fock state basis, the Hamiltonian of the system may be written as,

H̃ =

Z
dr ̃†

0(r)

✓
� ~2

2m
r2 + V

ext

+
1

2
 ̃†(r0)V (r � r0) ̃(r0)

◆
 ̃(r). (2.6.17)

Here  ̃† and  ̃ are the boson field operators that create and annihilate particles at position

r and V (r � r0) is the two-body interaction potential. In using only the two-body term it is

assumed that temperatures are low and the atomic sample is dilute, which is a valid assumption

for our system. As the interaction is weak it may be approximated as a mean-field interaction.

As a result V (r � r0) = g�(r � r0), with g = 4⇡~2
as

m

is the coupling term governed by the s-wave

scattering length a
s

. This result is valid so long as |n0a3
s

| << 1 and T << T
c

.

The time evolution of the operators may be given by using the Heisenberg equation such that,

i~d ̃(r, t)

dt
=


 ̃(r, t), H̃

�
(2.6.18)

If we impose the Bogoliubov approximation the field operator may be reduced to

 ̃(r, t) =  0(r, t) + �(r, t). (2.6.19)

Where  0 is the classical field representing the condensate wave function and �(r, t) excitation

modes within the boson field. If we assume low temperature, this second term may be neglected

and Eqn (2.6.18) substituted into Eqn (2.6.17) giving what is known as the Gross-Pitaevskii

equation (GPE),

i~d 0(r, t)

dt
=


� ~2r2

2m
+ V

ext

(r) + g| 0(r, t)|2
�
 0(r, t). (2.6.20)

This equation provides a very rich description of the behaviour of ultra-cold bosonic gases [75].

The ground state of a system may also be evaluated if we assume that the order parameter is

separable such that,

 0(r, t) = �0(r)exp
✓

� iµt/~
◆

. (2.6.21)

This reduces the GPE to,

✓
� ~2r2

2m
+ V

ext

+ g|�0(r, t)|2
◆
�0(r) = µ�0(r). (2.6.22)
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This is a key tool for investigating the behaviour of non-uniform weakly interacting Bose gases

exposed to some external potential.

Repulsive Interactions

A remarkable simplification to the Gross-Pitaevskii equation may be made that enables us to de-

rive a particular expression for the ground state of the system, for repulsive particle interactions.

Provided the trap exhibits no extreme anisotropy, the ratio of interaction and kinetic energy is

given by,

N0
a

s

ā
>> 1. (2.6.23)

This is satisfied under general experimental conditions and the Thomas-Fermi approximation,

which enables the removal of the negligible kinetic energy term from Eqn 2.6.22, may be used to

find that,

n0(r) = | 0(r)|2 =
µ � V (r)

g
. (2.6.24)

It can be seen that the condensate density is different from the ideal case. Using the harmonic

potential as before, the density distribution now becomes,

n0(r) =
µ

g

✓
1 � x2

R2
x

� y2

R2
y

� z2

R2
z

◆
, (2.6.25)

where the characteristic length scale R
i

=
p

2µ/m!2
i

is the Thomas-Fermi radius at which the

condensate density drops to zero along the i axis. This is an inverted parabolic shape that is

larger in extent then the ideal case due to the presence of repulsive interactions. Despite the

broadening of the BEC profile, the thermal cloud is still much broader and the transition readily

observable in time of flight imaging. The relation between N0 and µ may be found by integrating

over the density profile n0 to give,

N0 =
8⇡

15

µ

g
R̄3. (2.6.26)

Where R̄ = (R
x

R
y

R
z

)1/3 is the geometrical mean. This can be re-arranged for the Thomas-Fermi

chemical potential in the form,

µ =
1

2
~!̄

✓
15N0as

ā

◆2/5

. (2.6.27)

Lastly the spatial extent of the cloud is given by the Thomas-Fermi radius in terms of N0 as,

R = a

✓
15N0as

a

◆1/5

. (2.6.28)



46 CHAPTER 2. LASER COOLING, MAGNETIC TRAPPING AND EVAPORATION

Under regular conditions the small size and high densities of a BEC usually do not allow direct

observation of the condensate. However, when released from the trap, during the expansion,

increases in the spatial extent and decrease in density enable it to be readily observed. In this

release phase the residual energy of the sample is the driving force of its expansion. The rate

at which it expands in a particular direction is directly proportional to the trapping frequency

along this direction. As a result, for traps with large anisotropy between the z and perpendicular

directions, such that !
z

/!? << 1, the size of the condensate along the perpendicular and z

direction may be determined analytically as,

R?(t) ' R?(0)
p

1 + (!?t)2 (2.6.29)

R
z

(t) ' R
z

(0)


1 +

✓
!

z

!?

◆2⇢
(!?t) � ln

p
1 + (!?t)2

��
(2.6.30)

While this is a special case for highly anisotropic trapping geometries the basic elements are

qualitatively important for a variety of traps. It can be seen that the tight direction expands

much more rapidly than the weak resulting in a inversion of the trap aspect ratio for sufficiently

long expansion times. This is yet another signature of a condensate that also enables calculation

of the mean field energy of trapped atoms.

Condensate mixtures

The previous sections have discussed the properties describing single-species condensate. This

thesis is concerned with designing and moving towards a dual-species system and the physics

of BEC mixtures should be touched upon. Atomic mixtures are not new but demonstrate

rich physics including collective oscillations [136] and the miscible to immiscible phase tran-

sition [137, 138]. Further control, over the interaction between species, has been proposed to

allow observation of nonlinear Josephson-type oscillations [139], as well for use as a quantum

computer [140]. They have also displayed increased sensitivity for metrology with squeezing [66].

These are all a direct results of the physical richness multi-species condensates offer. Here we

concern ourselves with a dual-species condensate, which adds another interaction term to the

GPE equation to enhance our parameter space.

Assuming short-range interactions, coupled Gross-Pitaevskii equations may accurately de-
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scribe a dual-component condensate,

✓
L1(r) + g11| 1|2(r) + g12| 2|2(r)

◆
 1 = µ1 1(r), (2.6.31)

✓
L2(r) + g22| 1|2(r) + g12| 1|2(r)

◆
 2 = µ2 2(r). (2.6.32)

Here L
i

= �~2r2

2mi
+ V

ext,i

(r) and g
ii

= 4⇡~2a
ii

/m
i

is the intra-species coupling constant that

describes self-scattering processes of the ith atomic sample while g12 describes the degree of

scattering events between the two different species. Here we assume that g11, g22 > 0 such that

individual species are stable and then we may look at the ground state of the system. As the

drive of the experiment is towards a near-homogenous trapping potential we limit the discussion

to mixtures in a homogenous trap. From mean-field theory, the interaction energy between the

species may be calculated as,

E
int

(r) =
1

2

✓
g11n

2
1(r) + g22n

2
2 + 2g12n1(r)n2(r)

◆
, (2.6.33)

with n
i

= | 
i

|2 the density of the ith component. The interspecies scattering length, g12 =

2⇡~2a12/m12 where m12 =

✓
1

m1
+ 1

m2

◆�1

is the reduced mass of the two species. Considering a

miscible system, such that the two species may freely ‘mix’ and fill the box of volume V with N

atoms, of each species, then the interaction energy becomes,

E
mix

=
N2

2V
(g11 + g22 + 2g12). (2.6.34)

Alternatively if they are separated into volumes V1 and V2, then the total mean-field becomes

E
sep

=
N2

2

✓
g11

V1
+

g22

V2

◆
(2.6.35)

Using V2 = V �V1 and setting dE
sep

/dV1 = 0 it is found that V1/V = (g11 �p
g11g22)/(g11 +g22)

such that the separated energy becomes,

E
sep

=
N2

2V
(g11 + 2

p
g11g22 + g22). (2.6.36)

As can be seen, depending on the magnitude of g12 energy is minimised by either having the

atoms miscible or have distinct regions of a single species. When g12 >
p

g11g22 the two species
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will be immiscible and attempt to spatially separate from one another. Interestingly, the inter-

species scattering length a12, and subsequently g12, is readily tuneable for 87Rb and 41K clouds

that are prepared in the |F = 1, m
F

= 1i state via Feshbach resonances, discussed in section 2.7.

This is an important feature of our system and influenced the design ‘pathway’ towards quantum

degeneracy.
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2.7 Ultracold Atomic Scattering

Binary scattering events are the main types of collisions in dilute, ultra cold gases. The strength

of this can sometimes be controlled by Feshbach resonances. In the dilute gas regime, as in the

experiment of this work, the dominant scattering process are two-body and three-body collisions,

in which the particles interact via van der Waals forces, electrostatic repulsion and exchange

interactions. Under certain circumstances, these may be tuned for both the inter and intra

scattering of cold mixtures. Here we provide a brief overview of collisions in the low-temperature

regime and Feshbach resonances.

2.7.1 Elastic collisions and Feshbach resonances

For indistinguishable particles the probability of a scattering event is quantified by the elastic

collision cross-section, � given by,

� =
8⇡a2

1 + k2a2
, (2.7.1)

where k = 2⇡

�

, with � the de Broglie wavelength of the colliding particles. As previously men-

tioned a refers to the characteristic length scale of the scattering process, referred to as the

s-wave scattering length. This is, typically, on the order of several nanometers for bosonic alkali

atoms. Once temperatures are sufficiently low this becomes independent of energy and reduces

to � = 8⇡a2 and is equivalent the cross section of a hard sphere with radius a. In binary elastic

collisions there is no change in the internal state, which make it ideal for being the mediator for

evaporative and/or sympathetic cooling. The scattering length has little effect on the properties

of a thermal gas but a large impact on the properties of a Bose-Einstein condensate.

Inelastic collisions, on the other hand, allow the consideration of internal states of the atoms.

For cold samples, in which the average thermal energy per particle is much less then the separation

between internal states, such collisions typically result in heating and loss from a trapped atom

cloud. However, it is the existence of this internal structure that enable control of collisional

interactions.

Qualitatively, in a two-body collision, open and closed channels refer to the collection of

quantum states in which particles are allowed or forbidden to emerge from a scattering event due

to energy conservation arguments. An open channel is one whereby any channel has less or equal

energy E relative to the total energy of the system E
tot

= E1 + E2 + E
k

, Fig 2.7.1 (left), where

E1,2 are the internal energies of the particles, and E
k

their relative kinetic energies. Any channel

that possesses more energy is closed. However it is known that scattering potentials exhibit
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a resonant behaviour when a bound state (molecular) exists between the colliding particles.

The presence of this molecular state may dramatically modify the atomic scattering length via

Feshbach resonances [63, 141].

Interestingly this coupling, in a two-body collision, of the bound state in a closed channel

can be tuned under certain circumstances. For alkali atoms different hyperfine states may have

different magnetic moments and quantum numbers, thereby responding differently to applied

magnetic fields. When an appropriate field is applied a bound state may be brought close to the

interaction energy of the particles. They may then, briefly, scatter to the intermediate closed

channel before decaying into the open channel this changing the scattering interaction strength

about the Feshbach resonance. The change in scattering length by an external field is given by:

a = a
bg

(1 � �

B � B0
), (2.7.2)

where B0 is the resonant field, � the width of the resonances and a
bg

the s-wave scattering

length in absence any applied magnetic field. Due to the complexity of various contributions

from several closed channels the determination of the location and width of these resonances are

often left to be found experimentally. Fig 2.7.1 (right) shows two magnetic Feshbach resonances

between 87Rb and 41K prepared in the |F, m
F

i = |1, 1i state. These are important for phase

separation experiments, enabling us to readily tune the system across the miscible and immiscible

transition. An extensive overview of Feshbach resonance physics may be found in [63].
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Figure 2.6: Feshbach resonances in ultracold atomic collisions. (a) Interatomic potentials in the
centre-of-mass frame for colliding atoms in states separated by �E. Although scattering into the
upper potential (the ‘closed channel’) may be energetically forbidden, the presence of a bound
state near the asymptotic energy of the open channel dramatically alters the scattering cross-
section. (b) Variation of s-wave scattering length with magnetic field near the 155 G Feshbach
resonance in 85Rb. The scattering length tunes to zero at B = 165.7 G, and far from the resonance
approaches the background value abg = �443a0.

rate equation
ṅ = � �

i
Ki ni . (2.28)

Sections 4.1 and 4.4 are devoted to the investigation of two- and three-body inelastic loss
rates in 85Rb. Three-body collisions play an important role in the dynamics of collapsing
condensates, which we consider in Section 4.3.

2.3.2 Feshbach resonances

The existence of internal structure in the colliding atoms also precipitates some useful
consequences. It is well known that scattering from an attractive potential exhibits a res-
onant character when the potential admits a bound state close to the collision energy (see
e.g. [111]). The presence of this bound state can dramatically modify the elastic scattering
cross-section, causing it to diverge if the bound state energy matches the incident kinetic
energy of the colliding pair. This is known as a Feshbach resonance, first described in
the context of nuclear physics [43, 44]. Of course, perfect degeneracy is not possible if
the atoms have finite kinetic energy when they are far apart. However, the interatomic
potential is in general different for atoms in different internal states, and there may exist
a bound state in another ‘channel’ (set of internal states) which is near to resonance with
the incident energy (see Figure 2.6a). The scattering potential itself can provide coupling
between the channels via the Coulomb or exchange interaction, allowing this bound state
to influence the collisional properties of atoms in the entrance channel.

As different hyperfine states in alkali atoms can have different magnetic moments
and quantum numbers, they may respond differently to a magnetic field. This permits
tuning of the bound state energy with respect to the incident energy, allowing the scat-
tering cross-section to be controlled by applying an external field. This gives rise to a
magnetically tuned Feshbach resonance. The variation of the s-wave scattering length in

Figure 2.7.1: (Left) - A depiction of open and closed channels, corresponding to allowable and
forbidden internal state transitions. In the presence of an allowable bound (molecular) state
the scattering potential is greatly altered, adapted from [156]. (Right) A magnetic Feshbach
resonance between 87Rb and 41K in the |F, m

F

i = |1, 1i state as the differing hyperfine states
between the colliding and bound state may allow the molecular state to be tuned closer, image
from [79]. The 40 G resonances is particular interesting as it is experimentally obtainable and
broad allowing large tuneability.

2.8 Imaging

Having the capability to trap, cool, evaporate and manipulate is worth little if you cannot observe

the cloud in order to gain quantitative and/or meaningful data. This is done by imaging the

cloud, with a variety of techniques possible to do so. Here a brief overview of the current state

of the art in imaging of ultra atomic gases and theory required to understand data collected is

presented.

Their exist many imaging techniques, including absorption, fluorescence, scanning electron

microscopy, phase contrast and dark ground imaging (to list a few), for probing and understand-

ing Bose Einstein condensates. Here the measure for success is the atom number and spatial res-

olution achievable. In this regard, fluorescence has emerged as the front runner, having achieved

single atom detection [142, 143, 144], at high resolutions. This method is technically difficult, in

comparison to other imaging schemes and only applicable in deep optical traps. Furthermore,

the measurement itself is a parity measurement for site occupation and not the actual number

distribution due to light-assisted collisions. This means a ‘true’ image is only available when a

single atom is confined to a single trap site [144]. An alternate approach, is applying scanning

electron microscopy to ultra cold gases, enabling a resolution down to 150 nm, well below any

optical based method [145]. Unfortunately this technique suffers from poor efficiency, relying on

collection of ionised particles after collisions between the electrons and the ensemble. While these
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methods are impressive, such performance is not always necessary. Further, these are technically

demanding imaging methods when compared to the simplicity of absorption imaging.

Absorption imaging, arguably the simplest method and perhaps the most robust, has recently

moved forward demonstrating a number resolution down to 3.7 atoms [20]. This represents the

method of choice for imaging in this experiment.

2.8.1 Absorption Imaging and Thermal Clouds

Absorption imaging is the primary diagnostic tool for probing the ultra-cold atomic clouds in

our system. By passing a beam of near-resonant light through the atomic ensemble, absorption

by the atoms casts a shadow that can be analysed. In particular a probe beam, with intensity

profile I0(x, y), propagating along the z-axis and passed through an atomic sample of density

n(x, y, z) is attenuated as given by the Beer-Lambert law,

dI

dz
= �naI. (2.8.1)

where a is the atomic cross-section for a closed transition,

a =
3�2

2⇡

1

1 + 4(�/�)2 + I/I
sat

. (2.8.2)

With I
sat

and � the saturation intensity and natural line width of the imaging transition, and

I and � are the intensity and detuning of the imaging light. To obtain a useful expression we

integrate Eqn. (2.8.1), to show:

n(x, y) =
2⇡

3�2


I0(x, y) � I

F

(x, y)

I
sat

+ [1 + 4(�/�)2]ln(
I0(x, y)

I
F

(x, y)
)

�
(2.8.3)

Where I
F

(x, y) is the intensity profile of the attenuated beam. If the incident light is below the

saturation limit, I0(x, y)dxdy << I
sat

, then the two-dimensional density profile may neglect the

first term and Eqn. (2.8.3) reduced to,

n(x, z) =
2⇡

3�2

�2 + 4�2

�2
ln

I0(x, y)

I
F

(x, y)
. (2.8.4)

Under these conditions the column density is determined only by the ratio of absorbed and

incident light, requires no knowledge of the absolute power the atoms interact with. Detection

efficiencies and calibrations are not explicitly required for accurate atom distribution properties.
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The size, temperature and phase-space densities of an atomic cloud can be determined from the

column density distribution n(x, y). A fast method for extracting atom number is the integration

of the optical density (OD) of the absorption profile. The OD can be found by taking the negative

logarithm of the fractional transmission of a probe beam through an atomic cloud,

OD(x, y) = �

Z
n(x, y, z)dz = �ln(

I0(x, y)

I
F

(x, y)
). (2.8.5)

The optical density can be used to find the total atom number, found by integrating over the

imaging area.

N =

Z
n(x, y, z)dxdydz =

1

�

Z Z
OD(x, y)dxdy. (2.8.6)

As images are taken via a CCD absorption spectra are discretised, thus the integral for atom

number becomes a summation over the array. In order for more accurate atom numbers, another

image is taken that records background light levels while also aiding in cancelling dark-current

noise. This is known as the dark image, I
D

, and is subtracted from the absorbed and imaging

profile such that,

OD(x, y) = �ln(
I0(x, y) � I

D

(x, y)

I
F

(x, y) � I
D

x, y
). (2.8.7)

Alternatively, atom number and temperature can be determined by fitting the image of the cloud

with the expected density profile, as determined by the type of trap the atom sits within. Due to

Zeeman shifts and the small size of in-situ images, atoms are usually released from the trap and

allowed to expand before an image is taken. A thermal cloud is well described, when released

from a harmonic trap, by a Gaussian such that,

n(x, y) = Aexp
✓

� (x � x0)2

2�2
?

� (y � y0)2

2�
y

◆
+ B, (2.8.8)

where A = � N

2⇡�?�y
. By fitting the six parameter Gaussian to the cloud, determination of the

atom number and size distribution of the cloud is made possible. Generally a 2D fit over a

CCD array is computationally long and we instead elect to fit two different 1D Gaussians across

two orthogonal line profiles. Thus �? and �
y

can be found for meaningful data extraction.

Temperature may be calculated from a single in-situ measurement, however, the optical densities

are typically too high and in order to take useful data we make use of time-of-flight (TOF)

imaging. In TOF imaging the trapped atoms are allowed to expand ballistically, for a time t,

before an image is taken. The density profiles remain Gaussian with the characteristic length
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scales of the cloud, � = {�?,�
y

}, evolving as,

�2(t) = �2(0) + t2�2
v

(2.8.9)

Where �0 =
p

(2k
B

T/m) is the characteristic width of the atoms within the trapping poten-

tial. By taking two images at different times the temperature can then be extracted from the

cloud width at the two points ⌧ ,

T =
m

2k
b

�2(t2) � �2(t1)

t22 � t21
. (2.8.10)

Alternatively when the trap frequencies are known the temperature can be calculated from

a single width distribution via,

T =
m�2(t)!2

2k
B

(1 + t2!2)
. (2.8.11)

2.8.2 Imaging condensates

When the temperature of an atomic sample, confined to a harmonic potential, is lowered below

the critical temperature a Bose-Einstein condensate begins to emerge. This manifests as a narrow

peak in the phase space density, with a spatial extent smaller than that of thermal profile. This

represents the condensed fraction of the cloud, described by the Thomas-Fermi function. The

three-dimensional, and column, density profile of the condensate is then given by,

n(x, y, z) =
15N

8⇡R2
?R

z

✓
1 � (x � x0)2 + (y � y0)2

R2
?

� (z � z0)2

R2
z

◆
(2.8.12)

n(x, y) =
5N

2⇡R?R
z

✓
1 � (x � x0)2

R2
?

� (z � z0)2

R2
z

◆3/2

. (2.8.13)

Where R
i

are the Thomas-Fermi radiuses of the distribution. With the addition of an offset

term, the fitting function of the optical density for the condensed cloud is then Eqn 2.8.13.

At intermediate temperatures, around the critical temperature, a condensate is not pure and a

bimodal function is used as the fit. This bimodal function is simply the sum of Eqn 2.8.13 and

Eqn 2.8.8. The condensed atom number may be obtained from,

N =
8⇡

1.5 ⇥ 104
R2

?R
z

A, (2.8.14)
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Figure 2.8.1: Point spread function of a digital point source after it has been minimised and
reimaged. The FWHM of the first system is imaged and measured to be 650 nm within 7 % of
theoretical best value at 532 nm. Image taken with imaging system of the experiment.

Where A = 5N

2⇡R?Rz
.

In summary, the imaging of atomic clouds allows one to quantify the temperature, number and

spatial distributions of trapped atomic vapours. Further, one can directly observe the emergence

of a Bose-Einstein condensate by looking for a narrow incongruity with thermal distribution.

2.8.3 Imaging resolution

Due to finite aperture size, an imaging system can only reproduce a limited range of spatial

frequencies of an object. As these imaging systems are linear, however, the limit is well charac-

terised by its response to a point source, known as the point spread function (PSF) Fig.(2.8.1).

This has the form of an Airy pattern whose extent is determined by the incident wavelength and

numeral aperture of the system. The intensity distribution, of the PSF, is given by,

I(⇢) =

✓
2J1(⇢)

⇢

◆2

. (2.8.15)

Where J1(⇢) is the Bessel function of first order and ⇢ = r ·3.795/r0 is the radial distance r scaled

by the resolution r0. Resolution of the system is defined by the point were the first zero I(⇢)

and given by r0 = 1.22 · �/(2NA). An example of a PSF, showing the Bessel function nature, is

shown in Fig. (2.8.1).
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Chapter 3

The Apparatus

The construction of a fully operational apparatus that can reliably create, control and image Bose-

Einstein condensates was the main focus of my project. Despite advances and global knowledge

of BEC machines it typically takes new groups several years to reach the point of producing

novel experimental data. This chapter provides the particulars of our experimental methods and

infrastructure towards our 87Rb and 41K BEC apparatus. In particular the design, construction

and basic performance of the vacuum system, necessary for isolation from the environment, laser

system, required for the cooling, trapping and manipulation of atomic vapour, and the magnetic

coil infrastructure are presented. Each of these are addressed in detail in this chapter. However,

a technical summary is presented first.

The system consists of two chambers, the high-vacuum (HV) side, sitting at 1 ⇥ 10�7 mBar,

and the ultra-high-vacuum side (UHV), at < 10�10 mBar. Within the HV section, cold atomic

beams of 87Rb and/or 41K , are produced by a 2D-MOT before being sent into the UHV side

through a small aperture. This collimated beam of cold atoms is then collected and held in a

glass octagonal chamber in the 3D-MOT. Currently, atomic clouds of 87Rb and 41K can be simul-

taneously, and independently, produced. The remainder of the pathway to BEC is established

only for 87Rb.

Approximately 60 % of 87Rb atoms, caught in the 3D-MOT, are recaptured in the magnetic

quadrupole trap before being transported to another region in the UHV side of the apparatus.

This is a small glass chamber, termed the science cell, is fused to the octagon. This is done via a

transfer sequence conducted by consecutively alternating the current passing through three pairs

of electromagnets. Transfer to the science cell is necessary in order to provide high optical, and

57
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close physical, access to the atomic cloud. This is necessary for the use of high-resolution com-

mercial imaging microscopes close to the cloud, while also enabling ample space for interacting

with the atomic cloud with a variety of optical beams. Microwave evaporation then produces a

much colder, and therefore smaller, atom cloud. This is matched, in terms of spatial mode, for

loading into a single-beam dipole trap. In the future, this step will also cool 41K via sympathetic

cooling techniques. Emergence of a Bose Einstein condensate occurs as the cloud is optically

evaporated following a successful load into the hybrid trap.

At the completion of my time within the laboratory we were able to routinely collect more

than 2 ⇥ 109 87Rb atoms in the 3D-MOT that would be result in ⇡ 2 ⇥ 105 atoms in the BEC.

This represents a strong starting point and it is anticipated that, with sufficient optimisation, the

number of condensed rubidium atoms will be greater than 106. Independently, or simultaneously,

we were also able to capture 41K in the 3D-MOTs. Potassium is yet to be condensed as 87Rb was

used as a test species to benchmark and troubleshoot the apparatus. This is due to the fact that

techniques are better established with rubidium than potassium, and therefore we didn’t have

to concern ourselves with working with comparatively small atom number clouds and potential

issues arising from inter-species interactions.

In order to reach this point the entire apparatus had to be designed, constructed, built and

tested from the base up. In this chapter the main infrastructure is described, detailing the key

elements that make up the backbone of the apparatus including the vacuum system, laser sources,

optics and delivery and coil system, that took form in the first year of this project.

3.1 Vacuum System

A pristine vacuum environment is essential for all cold-atom experiments that require long trap

lifetimes. Collisions with background gas particles, which have energies many orders of magnitude

above trapped atoms, cause significant losses and heating which can impede evaporative cooling

and limit the lifetime of a trapped atomic cloud. In the worst case scenario, these background

losses will preclude emergence of a Bose-Einstein condensate. Even background vapour, which

may serve to feed a BEC, can create severe limitations on the lifetime of trapped atomic clouds.

As an example, background vapour may cause decoherence of carefully prepared quantum states

leading to spurious phase shifts in the output of atom interferometers [66]. To prevent this,

background collisions must be minimised.

Another key design element is the amount of physical access an experimenter has to address a
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trapped cloud. The variety of cooling, trapping, and imaging beams required, and considerations

for magnetic coil infrastructure, makes it advantageous to create a multi-chamber system. In

particular, the multiple chambers enable additional infrastructure to continually be added to

the system. Further, it allows for a pressure differential throughout the system to mitigate

background collisional losses. Our differentially pumped system enables the main experimental

chamber, where evaporation to BEC is performed, to be kept at ultra high vacuum (UHV)

pressures (< 10�10 mBar) while allowing the atomic source region to have relatively high alkali

vapour pressures (' 10�7 mBar), necessary for trapping large numbers of atoms. In our system

we produce a low-velocity atomic beam from background vapour in the 2D-MOT chamber,

Fig. (3.1.1), that is forced through a differential tube into the UHV section that serves as our

main experimental chamber.

3.1.1 Overview

A schematic of our vacuum apparatus is shown in Fig (3.1.1). The majority of the system is

constructed from commercial ultra-high vacuum components. These are of the conflat (CF)

variety, sealed by single use copper gaskets via compression with knife edges. A custom designed

3D-MOT chamber, with adjoining science cell, was made by Precision Glass Blowing, while

the 2D-MOT chamber was constructed in-house by the mechanical workshop. A 6-way cube

separates these two regions. Vertically a NEXTorr D 200-5 ion pump, with integrated hybrid

non-evaporable getter (NEG), is mounted to the cube via a conical nipple connected to a large

ion-pump mounting flange. The 8 L/s ion pump removes noble-gas loads, and an effective

pumping speed of 200 L/s is achieved with the NEG element. On the underside of the 6-way

cube a 90� flange is connected to an all metal valve, which was permanently closed once the ion

pump and NEG element were activated. The remaining two sides consist of ‘windows’ that allow

optical access into the vacuum chamber. The 3D-MOT chamber is connected to the cube by the

way of adjustable bellows and a rotatable conflat flange.

The 2D-MOT side consists of a custom-made chamber, connected to the 6-way cube via the

differential tube, Section 3.1.3. This is a long aperture that creates a pressure gradient across

the two regions of the experiments. The back end connects to a 5-way cross. Vertically mounted

off the cross is ‘T’ flange which has another all metal valve and Gamma-Vacuum TiTan 105

ion pump, pumping at 10 L/s. Electrical feed throughs are attached to either side of the cross

that connect to the internally connected atomic dispensers. These dispensers supply the system

with the atomic vapour of 87Rb and 41K when required. A second 3-way cross is attached
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Figure 3.1.1: Render of the full vacuum system, which comprises the main component of the
apparatus. The key elements of the system are shown indicating the difference between the
sides of the 2D-MOT and 3D-MOT of the chamber. These are separated internally by a low
conductance differential pumping tube. A description of each element is provided in the main
text.

with additional electrical feed throughs mounted on the side. The back face consists of an AR

coated window enabling optical access. In the following section, the key elements of the vacuum

system are discussed. This includes the differential pumping mechanism, 3D-MOT and 2D-MOT

chamber and bake out procedure.

3.1.2 Differential Pumping

In order to create the ideal environment for our trapped atomics gases a pressure differential of

two or three orders of magnitude, between the 2D-MOT and 3D-MOT chambers, a two-stage

differential pumping set up was designed. A simplified diagram of how we achieve this is shown

in Fig. (3.1.2). The two key regions of the system, the 3D-MOT and 2D-MOT chambers are

connected to their respective pumps, with speeds S1 and S2 L�1. The pumps are separated from

the main chamber, of each distinct region where P1 & P2 are labelled, by adjoining elements,

with conductance C1 and C2. This limits the pumping speed at these points, resulting at an

effective pumping speeds are S⇤
1 and S⇤

2 , where 1/S⇤ = 1/S + 1/C across the differential tube.
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Figure 3.1.2: Cross-section of the vacuum system showing the differential pumping arrangement
provided by the low conductance element C

d

.

This copper tube, separating the 2D and 3D-MOT chambers, is a custom made copper tube with

conductance Cd. This creates a pressure differential across the two, given by,

P2

P1
= 1 +

S⇤
1 � S⇤

2

Cd
' S⇤

1 � S⇤
2

Cd
. (3.1.1)

The conductance of each cylindrical vacuum piece is given by,

C =
⇡

6

r
2k

B

T

m⇡

D3

L
. (3.1.2)

Where D is the diameter of the tube and L its length. Here, S1 = 200 L/s and S2 = 10 L/s, while

the effective pump speed is S⇤
1 = 75 L/s and S⇤

2 = 5 L/s, due to limited conductance C1 and C2.

The bored hole in the differential tube is a 12 mm long, 1.2 mm diameter hole with conductance

Cd = 0.016 L/s. Using these values the expected pressure differential is given as P2/P1 ' 1200 .

Additionally, any atoms that pass through the tube must have a certain trajectory lest it interact

with the walls of the tube. This means that any atom sent from the 2D-MOT to the 3D-MOT

is well matched to the 3D-MOT capture range.

As a differential pumping scheme consists distinct pressure regions, it is instructive to discuss

their design and construction individually. First we present the custom designed and constructed

2D-MOT chamber, where background vapour supplies the 3D-MOT, and then discuss the 3D-

MOT chamber.
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3.1.3 2D-MOT chamber

The 2D-MOT chamber is where a background gas is cooled, in two dimensions, to produce a col-

limated beam of atoms that are captured in the main experimental chamber. These cold atomic

beams are not only relevant to ultra cold atom experiments, but also have a wide variety of sig-

nificance in a variety of other applications, including atom optics [146] and QED cavities [147].

Regarding the production of intense atom beams, Zeeman slowers [148] are still widely used to

obtain a high flux of atoms. Alternate methods, such as low-velocity intense source MOTs [149]

are also used. Here we have elected to construct a chamber for use as a two-dimensional MOT

which enables the use of relatively low laser power, low atomic vapour pressure and moderate

infrastructure to produce our cold atom beams [150, 151, 152]. A 2D-MOT operates by cooling

atoms in two-directions while a combination of the longitudinal thermal motion and an addi-

tional push beam, forces atoms to move along this direction. Passing them through a suitable

aperture, the divergence of the beam can be controlled. A more detailed explanation is provided

in section 4.1.1.

Figure 3.1.3: 2D-MOT chamber of the vacuum system prior to assembly. Left - render of the
assembled and exploded components of the 2D-MOT chamber, illustrating the double o-ring
vacuum configuration and attachment points. Right - Actual chamber before and after assembly.

Originally the 2D-MOT chamber was an all-glass custom made piece. However, upon initial

assembly it was damaged and a new metal chamber was designed and constructed, Fig (3.1.3).

The design itself avoided the use of UHV glues and metal seals to increase reliability. It consists

of a machined stainless steel cuboid chamber, with CF flanges welded to the ends. The inner
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chamber is 62 ⇥ 21 ⇥ 75 mm, with 20 ⇥ 75 ⇥ 3 mm windowed regions to allow optical access.

This window size was chosen as it matches the 2D-MOT beam extent as originally designed for

the defunct all-glass chamber. The windows themselves are BK7 glass, not AR coated, and held

onto the main chamber by M3 screws. A vacuum seal is provided by custom made Viton O-rings

recessed into milled grooves, Fig (3.1.3). Shown in the figure are the existences of two separate,

rectangular, O-rings that seal an inner and outer volume respectively. This produces two nested

vacuums, with the outer limiting permeation of atmospheric gases through the inner o-ring and

into the main chamber. This allows realisation of UHV pressures with Viton seals [153]. The

recess, which provides the sealing point for the O-rings, was milled with angled grooves. A

standard, rectangular milled groove would have resulted in micro-channels that extend across

the o-ring, creating a vacuum leak. Angled channels, when correctly milled, make a seal with the

Viton through which these channels are not present. A standard threaded screw-in 10 mm tube

adapter provides a port to vacate the outer vacuum region. This is viewable in the exploded

view of the 2D-MOT chamber in Fig (3.1.3). Additionally the double Viton seal illustrates the

space of the outer chamber, connected to one another by screw holes to each of the four faces.

To prevent atmospheric gas permeation, this outer volume must be periodically pumped down.

A small diaphragm pump automatically pumps down this part of the system each night. A

dimensioned image of the 2D-MOT outer chamber is given in Fig (3.1.4).

Several other important aspects of the system are housed with the 2D-MOT chamber. First,

a five-way cross connects two electrical feed through elements and a T-piece that adds an all

metal valve and the Gamma-Vacuum TiTan 105 10 L/s ion pump. Another T is attached, to

the final port of the cross, for an additional electrical feed through point and optical viewport,

Fig (3.1.4) (top). The ion pump is held at 65 �C to prevent arcing from the alkali deposition.

The electrical feed throughs allow external connection to the internally mounted vapour sources.

The vapour sources are SAES alkali metal dispensers, containing 87Rb and 41K, in their naturally

occurring isotope mixtures. In total nine sources are currently installed in our vacuum chamber,

5 for potassium and 4 for rubidium. These must be thermally activated to expel contaminants,

before bringing the system down to its terminal pressure, to ensure their proper operation and

reduce chance of contaminating the system. The electrical feed throughs allow current to be

passed through these dispensers that heat the sources contained within. This causes a reduction

reaction to expel a pure gas sample into the chamber. These dispensers are operated in one of

two ways. These are either continuously run at a low current (4 A) or via flashing (6 A) for

1 min every hour).
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Figure 3.1.4: Top - Birds eye cross-sectional view of the vacuum apparatus. Indicating the key
areas of the 2D-MOT side. The 2D-MOT chamber connects to a five-way cross that connects to
two electrical feed through connection points. Another feed through is provided at the ‘T’ point.
Optical access is provided by the rear viewport at the back of the system. The ion pumps (not
shown) extend out of the page. Bottom - Dimensioned schematic of the two-dimensional MOT
chamber, all dimensions in mm.

3.1.4 3D-MOT Chamber

The bulk of the experimental procedure, to create a BEC, of 87Rb, is carried out in the main

experimental chamber, known as the 3D-MOT chamber. In order to have a successful and

versatile experiment, this region must satisfy several criteria. The 3D-MOT must have sufficient

optical access for three orthogonal cooling and trapping beams. Similar access is required,

following initial trapping in the 3D-MOT, to continue to pathway to condensation and have

ability to manipulate and image atoms in the science cell. The glass components must be

designed with consideration to the other infrastructure required, including quadrupole coils,

imaging beams and other manipulation elements. Here we optimised our design to allow close

physical access to the cloud at the science chamber for high-resolution imaging.

The 3D-MOT chamber is a custom glass piece, with a glass to CF flange transition, designed

in-house and manufactured by Precision Glass Blowing, Fig (3.1.5). A quartz octagonal cell
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Figure 1.1.5: Top - Image of the actual manufactured octagonal glass chamber after assembly
onto the system (left). Six 1" dia windows are available for optical access allowing four to be
utilised for the MOT. Other orthogonal beams enter through the vertical which has sufficient
optical access. The science cell is fused to the octagon by a 38.1 mm glass transition providing
sufficient clearance for required access while also minimising transfer distance. The rectangular
cell allows a single narrow dimension to place a microscope objective close to where the cloud
will remain.
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Figure 3.1.5: Top - Image of the actual manufactured octagonal glass chamber after assembly
onto the system (left). Six 1" diameter windows are available for optical access allowing four to be
utilised for the MOT. Other orthogonal beams enter through the vertical windows. The science
cell was fused to the octagon via a 38.1 mm glass transition providing sufficient clearance for
required access while also minimising transfer distance. The rectangular cell allows a microscope
objective to be placed close to the cloud.

minimised the overall size of the system while providing sufficient viewports for optical access.

The octagon windows are AR coated (700�1100 nm) and 25.4 mm diameter, providing sufficient

access for conventional 25.4 mm optics. Vertically, the 3D-MOT chamber is capped with AR

76.2 mm diameter windows. Originally these vertical windows were intended to be 5 mm thick,

for close access, but manufactured to be 10 mm thick. This was done in order to prevent physical

stress that would cause optical distortions, or even breakage, under vacuum. The science cell,

also made from quartz, was fused to a side window, orthogonal to the CF flange. This is done

to remove direct line of sight from the 2D-MOT beam and vapour source that feeds the main

experimental chamber. The science cell is a 12.5⇥46.25⇥22.5 mm Hellma Analytics 101.150-QS

fluorescence cell with 1.25 mm thick walls. The clear aperture of the Hellma cell is the central

10 ⇥ 45 ⇥ 20 mm region with 1 � � flatness specified across the apertures. This type of science

cell is uncommonly thin in ultra cold atom experiments, yet enables a significant advantage. In

particular it allows very tight physical access to the eventual location of BECs. The windows are

thin enough, and the cell small enough, that commercial high magnification microscope objectives

can be brought close for efficient imaging.

The other elements of the 3D-MOT side are shown in Fig (3.1.6). A six-way cube connects the

HV and UHV side as well as the glass chamber by a set of bellows. These bellows were added
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Figure 3.1.6: Image of the vacuum system illustrating the key elements of the 3D-MOT. Not
shown is the NEXTorr pump and NEG element connected to the nipple vertically.

to reduce stress on the glass chamber, during construction, while also providing some spatial

degrees of freedom to control the orientation of the glass cell. Due to imperfect manufacturing

procedures the science chamber is not square relative to the octagon, off axis by ⇡ 1�. By adding

micrometers at the bellows mounting point, the science cell may be brought square with optical

table to prevent aberrations, and alignment complications, with the high-resolution imaging

system. These micrometers (not pictured) are held in by a small M4 screw and rest on ball

bearings on the attaching CF flange. The result is an ideal science cell positioning, but tilted

octagon cell. This is acceptable as the 3D-MOT performance has shown to be have negligible

susceptibility to this slight misalignment. The final element of the UHV region, is the conical 4.5"

nipple connected to the NEXTorr ion pump (not shown). The 4.5 " adapter prevents limiting

the pumping speed at the differential tube by having negligible resistance to conductance.

3.1.5 Assembly and Baking

In order to achieve UHV conditions (< 10�10 mBar), required in the science chamber, as many

impurity atoms and contaminants adsorbed to the interior surface and those trapped within the

bulk of the metal components must be removed. This is crucial as small amounts of contaminants,

such as skin oil residue or water vapour, would delay or limit the lowest obtainable pressure of
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a vacuum system. All elements prior to assembly were thoroughly cleaned. This included an

ultra-sonic methanol bath of the 2D-MOT elements, alcohol wiping of viewports and flanges,

and routine acetone rinsing. All vacuum connections are CF flanges sealed by single use copper

gaskets and silver-plated vacuum bolts, with the exception of the 2D-MOT chamber. The sealing

of the 2D-MOT chamber was a delicate procedure as any undue stress, on the windows or Viton

O-rings, could easily result in damage or formation of gas channels.

HV and UHV pressures may only be achieved provided the outgassing of vacuum elements

is small. Contaminants trapped within the vacuum components must thus be removed. To do

so, the entire system goes through a baking stage where the temperature is elevated to ' 275�C

as outgassing of impurity atoms, introduced during the manufacturing process, exponentially

increases with temperature. Further, water and organic hydrocarbons adsorbed on the interior

surface are also removed. For the bake to be successful the entirety of the apparatus must

be brought up to temperature, lest outgassed atoms re-attach to the cold regions. These atoms

would subsequently redistribute when the system was cooled to room temperature. This bake-out

must be done under vacuum to remove all impurities. As ion pumps are only suitable for use at

pressures less then 10�6mBar, the impurities must be removed via alternate pumping methods.

As such a bake-out and UHV realisation is a two-stage pumping process. First, the vacuum is

pumped to a moderately low pressure and baked. Contaminants are removed by an a pair of

external pumps, before the ion pump can be engaged. The standard configuration consists of a

turbo pump supported by an atmospheric pressure pump, such as a scroll or diaphragm pump,

known as the backing pump. These must be removed from the system as their mechanical

motion can introduce detrimental vibrations to an experiment. By connecting them to the

system through the metal valves, once impurities are removed, the system can be sealed off from

the turbo and backing pump before they are switched off.

The general bake-out procedure was as follows. First, the ion pumps were off with the turbo

pump idle while the backing pump reduced the system to its terminal pressure. A scroll pump

was used for both sides of the system, with the pressure plateauing at 10�3 mBar overnight.

The turbo pump was then activated reducing the pressure to ' 10�7 mBar. Although this is a

sufficient pressure in which the ion pumps could have been engaged, the outgassing of deep-seated

impurities, constituting a form of leakage, would limit the pressure of the system and/or rapidly

degrade the ion pumps. As such, the system was baked by increasing the temperature to promote

this outgassing. For optimal effect, each component of the vacuum was heated to its highest rated

operational temperature with thermal gradients across the system minimised. Naturally, glass
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Figure 3.1.7: Representative pressure data recorded for the two key bakes of the system. Right
- The all metal bake with four distinct regions (a) Turbo and backing pump pressure reduction
before raising the temperature in (b) to T̄ = 330 �C. The extended bake (c) where the temper-
ature remains constant until pressure begins to plateau. Once this occurs the system is brought
back to room temperature and further pressure reduction occurs (d). Left - The second bake
of the full vacuum system showing the pressure in the 2D and 3D MOT sides respectively. (a)
The initial pump down of the system with turbo and backing pump before the temperature rise
and first part of extended bake(b). The dispensers were outgassed in (c) before allowing another
extended bake (d). The turbo pumps were switched off and ion pumps on in (e) resulting in
pressures < 10�10mBar on the 3D-MOT side as desired. A pressure spike in the all metal bake,
section (d), was caused by brief activation of the vapour gas dispensers.

and other non-metal components could not reach the same temperature as stainless steel and

copper and, as is not uncommon, two bakes were performed. Initially a higher-temperature all-

metal bake was performed to quickly remove deep-seated impurities within metal components.

The system was initially constructed using blank flanges and nipples in place of viewports, 2D-

MOT and 3D-MOT chambers respectively. A nitrogen valve was affixed to the system for the

baking procedure. Subsequently a lower-temperature bake was undertaken with all elements

installed.

In order to rise the system to temperatures greater than 300 �C, resistive heating tapes,

connected to mains-voltage and regulated by commercial light dimmer switches were wrapped

around the entirety of the system. Thermocouples were then placed as close as possible to

chamber walls in strategically-chosen locations, to probe the local temperature. Subsequently, to

maintain heat, several layers of commercial aluminium foil were wrapped about the apparatus,

creating an oven. The all-metal system was brought to an average temperature of 330 �C

and held for 6 days before it began to plateau at approximately 3 ⇥ 10�8 mBar in two weeks.
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Reducing the temperature back to ambient resulted in a further pressure drop, Fig (3.1.7) (left).

Following this the system had to be fully assembled, with glass components added, necessitating

opening the system up to atmosphere pressure, potentially reintroducing contaminants. To

reduce reabsorption of these impurities the system was flooded with nitrogen and a continuous

stream present during re-assembly. With the 2D-MOT and 3D-MOT chambers and viewports

affixed, the bake-out procedure was repeated at an average temperature of 150 �C over a period

of two weeks, Fig (3.1.7) (right). Here ion pump gauges monitored the pressure for each side.

This proved important as the 2D-MOT cell took a significantly longer time to reach terminal

pressure, attributed to the residual impurities in the 2D-MOT chamber and Viton O-rings. A

custom brass oven was constructed to be placed around the 3D-MOT in order to avoid contact

of the heating cables with the glass cell. During the bake the dispensers were also flushed of

impurities by briefly passing current through them. Once brought to room temperature the

all-metal valves were finger tightened while the NEG element and ion pumps were engaged. The

two pressures quickly reduced to 3 ⇥ 10�10 and < 10�10 mBar (the ion pump gauge measurable

limit) for the 2D-MOT and 3D-MOT regions respectively.

While we have described the main two bake-outs of our system several complications arose

that made the procedure more difficult. As our original, all-glass, 2D-MOT chamber cracked

during its first assembly trial (after the all metal bake) and the new stainless steel 2D-MOT

chamber had to be baked on it’s own prior to assembly. Viton readily absorbs water and had

to baked also. This was a precarious procedure as rising the temperature also results in the O-

rings becoming more brittle, potentially hindering their ability to seal the system. As previously

discussed the outer volume within the 2D-MOT could not maintain its pressure of 10�2 mBar for

extended periods due to permeation through the outer o-ring. During the December festivities

of the 2013-2014 summer this chamber was not outgassed for several weeks, enabling diffusion

of atmosphere gases into the outer volume that also increased the pressure of the 2D-MOT

chamber. As such another bake-out of the system, just on the 2D-MOT chamber, was undertaken

to reduce the pressure back down. A final note is that, during assembly, two small leaks arose

at the differential-pumping tube flange and bottom of the cube. While not initially a problem

its has become apparent that the vacuum is no longer ideal, pressures on either side increasing

to 3 ⇥ 10�10 and 5 ⇥ 10�8mBar in the 3D/2D chamber, and may be contaminated due to

their presence. In particular it is thought that they are somewhat pressure limiting the system

and saturating the NEG element. Thereby reducing the pumping speed and hence pressure

differential across the system. The result is the vacuum may soon be re-opened to atmosphere
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to mend these leaks and a second ion pump added to the 3D-MOT side of the system.

3.2 Experimental control

One of the technical challenges, for experiments in atom-optics, is the accurate timing and

control on long and short time scales. At the beginning of each experimental run it normally

takes ⇡ 10 s! 15 s to form an adequately sized MOT, and double this to form a BEC. Before,

during and after these events a variety of smaller tasks must be completed with fine control down

to µs. In the most general sense, a typical atom optics experiment requires control over a variety

of electrical systems that require either digital or analogue input. Further, the time scales and

resolution required for each of these is typically varied ranging from µs to s. This separates the

requirements of a control system into two key elements, the components that create and produce

signals, and the timing and control elements.

Commercial PXI input/output cards supply digital and analogue signals. These cards are

housed in a National Instruments NI PXIe-1062Q chassis, enabling communication with the

main experimental PC. An NI PXI-6723 card produces analogue signals. This module provides

32 analogue channels with digital triggering capabilities, and 8 digital I/O channels. It is slew

rate limited to 10 kHz with outputs voltages from �10 to 10 V. Digital, TTL logic, is from a NI

PXI-6514 with 32 available I/Os. They have two high levels, 3 V and 5 V. As these are integral

and expensive components, they are protected against the circuits they connect to by buffer

operational amplifiers circuits. Connection cables connect the I/O cards to connector busses in

rack mounts that house the buffers, Fig. (3.2.1).

In order to interface with the cards we make use of the open source ‘Cicero Word Generator’

control package, authored by Aviv Keshet at the MIT Center for Ultracold Atoms. This software

allows users to visually configure complex timing sequences. Most significantly, the software

includes the option for a ‘variable timebase’. This has the ability to generate clock pulses,

triggering outputs from NI cards, only when card output needed to change. This is opposed to

a ‘fixed timebase’, where each clock pulse would update the cards regardless of its requirement

to change. As such buffer length, which are a list of instruction for the card, is minimised.

Additionally, the ability to use an field programmable gate array (FPGA) enables a user to

divide down an external frequency source for use as a variable timebase. In this experiment we

use a SRS FS725 10 MHz atomic clock as a stable clock base, which the FPGA can divide down.

A schematic of the computer control and timing system is shown in (3.2.1).



3.3. LASER SYSTEM 71

Figure 3.2.1: Schematic of the sequence and timing signals in the experiment. The control soft-
ware is Cicero Word Generator with the Atticus server for communication with the NI hardware
and FPGA. The FPGA creates a variable timebase, for optimising sequence length, based of a
stable 10 MHz fixed signal from the atomic clock. The FPGA triggers the NI hardware to change
its output which is passed to the experimental apparatus through protective breakout boxes.

3.3 Laser System

Light required for the efficient cooling, trapping and imaging, of atomic clouds must be of a

specific wavelength and narrow linewidth, when compared to the Doppler width and the hyperfine

states of atomic gases. This is readily achievable with commercially available lasers, generally

stable below the relevant atomic linewidth, 6.0 MHz and 6.2 MHz for 87Rb and 41K, respectively.

This experiment consists of a combination of commercial external-cavity-stabilised diode lasers

(ECDL) and tapered amplifier (TA) modules with linewidths typically below 1 MHz. These

diode lasers also demonstrate a mode-hop free tuning range > 15 GHz, and powers ranging from

100 mW to 1 W. Here we discuss, in detail, the laser system required to produce the broad range

of frequencies to cool, trap, and image atoms, along the experimental pathway, to condensation.

In particular, we discuss the frequency locking, beam control and combination techniques that

make our laser system, Fig (3.3.1).
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Figure 3.3.1: Overview of the laser system used to generate the cooling, repump and imaging
beams used in the experiment. See text for a detailed description. Not shown are the master
lasers that provide the frequency stabilised ‘seeding’ light for the amplifiers.

3.3.1 Saturated absorption and locking

When an ECDL laser is not actively stabilised, the frequency will drift in accordance to fluc-

tuations in temperature with time. This is prohibitive for the requirements of laser cooling.

The precise knowledge and control of the laser frequency is also required. Naturally, locking the

laser frequencies directly to the hyperfine features of the relevant atomic spectra is ideal as these

provide a natural wavelength reference. In order to do so these states must be distinguishable

within the Doppler broadened profile. The method to do this, employed in our laboratory, is
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saturated absorption spectroscopy [154].
2.4 Laser system

-300 -200 -100 0 100 200 300

a

87Rb

i

ii iii

iv

v

vi

Frequency (MHz)
-400 -200 0 200 400

b

39K

i

ii iii

iv

Frequency (MHz)

Figure 2.19: Saturated absorption spectra for the D2 transitions of 87Rb and 39K. The
saturated spectra are shown in black, Doppler broadened versions in red and the di�erence
between the two in blue. a Transitions from the F = 2 ground state of 87Rb. Peaks i, iii and
vi are direct transitions to the F 0 = 1, 2 and 3 excited states respectively, the rest being the
corresponding cross-over peaks. The x-scale shows the frequency di�erence in MHz from the
F = 2 to unperturbed upper state transition. b Full spectrum for the D2 line of 39K. Peaks i
and iv are the conglomerated transitions from the F = 2 and F = 1 ground states respectively.
The crossover dips ii and iii are to the F 0 = 1 and F 0 = 2 upper states respectively. To
accentuate the features the spectrum was taken using a vapour cell that was heated to 30 �C,
but we have not found it necessary to heat the cell when locking our laser. The small residual
narrow features in the Doppler broadened profile are likely due to reflection of the probe beam
in the system. The x-scale shows the frequency di�erence in MHz from the unperturbed D2

transition.

MOT discussed later), increasing the absorption of the probe beam. We can actually

just make out two inverted peaks in Fig. 2.19 b, which correspond to the F � = 1 and

F � = 2 upper states, being the only two states accessible to both lower states by the

standard dipole transition selection rules.

2.4.2 Frequency locking of lasers

The photodiode in the saturation absorption spectroscopy setup provides us with a

signal that is either at a local maximum or minimum when we are resonant with one

of the hyperfine transitions or one of the cross-over transitions. It is then a relatively

straight-forward task to implement a feedback mechanism to lock the laser to one of

these frequencies. We use cross-over resonances as they provide the strongest signal.

The principle relies on applying some low amplitude jitter to the laser frequency

and comparing the photodiode signal either side of the central frequency. For example,

if we are locking the laser to a peak the signal just either side of resonance will be

lower than the central signal. When multiplied by the wave-form of the jitter this will

54

Figure 3.3.2: Saturated absorption spectra of the D2 cooling transitions of 87Rb and 41K, courtesy
of [156]. The Doppler profile shown in red, saturated spectroscopy in black and the difference
in blue. (a) Transitions from the |F = 2i sate of 87Rb showing the direct transitions to the
|F 0 = 1, 2, 3i i, ii, iv, the rest being cross over transitions. (b) Similarly the spectra of 39K
showing the merged |F = 2i (i) and |F = 1i (iv) transitions. ii and iii correspond to their
respective cross-over dips respectively.

In saturated absorption spectroscopy, a weak beam is passed through an atomic vapour cell,

producing a thermally broadened absorption spectra (Doppler spectrum), as the laser is scanned

over a range of frequencies. A counter-propagating pump beam also moves through the cell. In

general, atoms will interact primarily with a single beam as a result of Doppler shifts. However,

those at rest will interact with both beams simultaneously. For these atoms, the pump beam

forces them to lie in an excited manifold or cycle them into a dark state. As a result, the probe

beam will no longer be attenuated due to the fact that a significant number of atoms will be in a

‘dark’ state. Similarly if the wavelength, in the atomic reference frame, lies halfway between two

transitions (such between the cooling and repump lines) an additional feature in the absorption

profile is observable, termed the cross-over peak. Typically this is the strongest feature in the

saturated absorption spectroscopy spectra and used to establish a stable frequency reference.

Due to the small natural abundance of 41K (6.7 %), its signal is weak. As such the lasers are

locked to the cross over transition of the more abundant (93 %) bosonic isotope 39K. Further,

potassium has an inherently small splitting between hyperfine features that are not resolvable in

our lab. These saturated absorption spectra for the D2 cooling transition for both species are

shown in Fig (3.3.2). Our cooling lasers, for 87Rb and 41K, are locked to the |F = 1, 2i cross
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over dip (ii). Similarly the repump laser is locked to the |F = 1i cross over feature.

3.3.2 Beam Control

A broad range of control over a beams frequency, power and the ability to toggle an on/off

state is integral for the operation of the experiment. Control over the frequency and power is

given by acousto-optic modulators (AOMs) and their driving circuits. AOMs consist of a crystal

transducer capable of converting RF energy to sound waves. These travelling sound waves

produce a diffraction grating on which incident light may scatter. The coupling of incident light

with the sound waves, under the correct conditions, can result in the majority of power being

placed into a non-zero order of the diffraction pattern. By varying the frequency of the input

signal the periodicity of the diffraction changes along with the frequency of the scattered light.

The driving signal is provided by a voltage-controlled oscillator (VCO) that passes through

a voltage variable attenuator (VVA), a RF switch and then a 2 W amplifier before creating

the diffraction grating in the crystal. All these elements are Mini-Circuits elements connected

via SMA connectors. The VCO has a user input that defines the frequency fed into the VVA.

Similarly the VVA has a user analogue voltage input which enables the resistance of this element

to be changed as required. This alters the power into the AOM, and subsequently, the diffraction

efficiency giving a user power control over a beam. Lastly, the RF switch ensures that the signal

to the AOMs can be extinguished. For 41K, the majority of AOMs are 2 W AA-opto electronics

MT110-A1-2, centred on 100 MHz. The remainder, used mostly for 87Rb light are 1 W 80 MHz

Isomet 1205c units.

While the RF switch does provide a method for toggling on and off the AOM it does not pro-

vide complete extinction as thermal and trickle effects persist. A simple solution to completely

extinguish a beam is a physical barrier in its path, via a shutter. Commercially multiple options

for optical shutters exist however in-house shutters provided the best performance. These are

made based on the design from the Scholten group in Melbourne [157]. The shutters are con-

structed from generic defunct iPod hard drives. The voice coil actuator drives the hard drive

arm that moves a flag shuttering the beam as required. These shutters are fast, with a rise time

of ' 3 ms, and provide complete extinction.
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Figure 3.3.3: Schematics of the 87Rb master oscillators for the repump (a) and cooling (b) light.

3.3.3 Rubidium laser sources

The repump and cooling light, for trapping and cooling 87Rb, is derived in a two-stage process.

First, low-powered master oscillator ECDLs are locked to their respective cross-over transition,

Fig 3.3.3, with their output used to seed a pair of amplifiers, made from modified laser cavities.

Both master oscillators are Toptica DL100 units, with outputs of 80 mW. A small portion,

⇡ 4 mW, of this is sent to the saturated absorption lock pathway. In general the pathway consists

of a Rb vapour cell with the retro-reflected ‘probe’ beam fed onto a photodiode. This signal is

fed into a lock-in amplifier, producing an error signal along peaks of the absorption spectra. The

error signal may then be used to lock the laser to the correct transition. Cooling light is locked

to the |F = 2i ! |F 0 = 2, 3i crossover peak, located 133 MHz below the |F = 2i ! |F 0 = 3i

cooling transition. A double-pass acoustic-optic modulator (AOM), centred on 100 MHz changed

as required, in the cat’s-eye retroreflector configuration, in series with another single-pass AOM

(fixed at �80 MHz after the amplifier) brings the wavelength closer (or further) from resonance

as required, Fig (3.3.3). Quantitatively, the double pass AOM may be used to scan the detuning,

� = +1 � ! �18 � as required, over a short time period. Care must be taken that detuning

does not cause power fluctuations from decreased diffraction efficiency through the AOM. For

cooling and trapping we red detune to �2.7 �. During imaging the light is brought closer to

resonance, for a stronger absorption signal. Given the limited amount of real estate, on the

main experimental table, and concerns about mechanical vibrations from the main experiment,

these master oscillator ECDLs are placed on a separate optical bench to the vacuum system and
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other optical elements. This isolates them from the various mechanical components that might

disrupt the lock, such as shutters. A 10 m, 630 nm Thorlabs polarisation maintaining (PM) fibre

transports the seed light for the cooling amplifier to the main experimental table. This serves as

the cooling light for both the 2D and 3D MOT beams as required.

Given the large separation between the |F = 1i and |F = 2i states of 87Rb (⇡ 6.8 GHz) it is

not practical to derive the repump light from the cooling light directly. Previously, we attempted

to use an offset lock, using the set frequency of the cooling light to lock the repump light, but

found the method not suitably stable. As such another saturated absorption spectroscopy lock

was used. Repump light is locked to the |F = 1i ! |F 0 = 1, 2i cross over peak, 78.5 MHz below

the desired repump transition (|F = 1i ! |F 0 = 2i). As per the cooling light, the majority

of power is coupled into an optical fibre to use as a ‘seed’ in the modified Toptica DLX110.

This unit, acting as an amplifier, has a small aperture drilled into the rear with its grating

removed, such that the cavity is fed directly from the ECDL light. This provides a high amount

of power, directly available for the main experimental region, without having to worry about

locking it directly. This amplifier feeds several cold atom experiments in the laboratory, with

approximately 80 mW brought over to our experimental table. The repump light is brought to

resonance by a single-pass AOM providing a +78 MHz shift. This light serves as the repump for

both the 2D & 3D-MOT.

3.3.4 Potassium laser sources

In comparison to 87Rb, the laser requirements for effective cooling and trapping of 41K are

more technically demanding. This is a consequence of the energy spectrum separation between

|F = 1i and |F = 2i manifolds. In general, a greater amount of power is required, as the

distinction between cooling and repump light becomes semantic, while four different wavelengths

are required to efficiently operate the 2D and 3D-MOT [69]. In regards to specifically targeting
41K atoms, it is important to recognise that due to the low natural abundance of this isotope

(⇡ 7%), creating a reliable lock on the repump, cooling or cross-over dip is difficult with regular

vapour cells. As a result, to produce light resonant on the 41K D2 line, the master laser is locked

to the 39K cross-over transition and post-processed via AOMs to the desired frequency.

The ‘master’ laser for the 41K light is provided from a refurbished Toptica DLX110 ECDL,

optimised for lasing at 766 nm, with a nominal output power up to 400 mW. Frequency stabil-

isation is done via a saturated absorption spectroscopy set-up, where 2 mW is provided from

an internal beam sampling plate, emitted from a side aperture. We shift the output of this
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beam by 85 MHz before passing it through the vapour cell. The signal from the retro-reflected

beam is sent to a Toptica Digilock module, which allows computer control of the lock. While we

lock to the |F = 1, 2i ! |F 0i 39K crossover feature, the frequency shift provided by the AOM

ensures the light is ⇡ 22 MHz red detuned of the |F = 2i ! |F 0 = 3i cooling transition of 41K,

Fig (3.3.4) (left). We may change this detuning by changing the frequency of the AOM, when

required. The bulk of the power from this laser is coupled to the main experimental table to be

2D-MOT cooling light. The remaining (⇡ 60 mW) is used to seed a Toptica BoosTA tapered

amplifier. This provides the power for the remainder beams required for cooling, trapping, opti-

cal pumping, push and imaging the cloud. This BoosTA preserves the spectral properties of the

input light, while supplying 1.5 W. While sufficient, the outlay of the locking AOM means any

change (such as optimisation of 2D-MOT detuning) will result in a cascade of frequency changes

throughout the system. Fortunately, the cat’s eye retroreflector arrangement of AOMs prevents

small changes in detuning from producing large changes in power delivery.

Lock Point (+85 MHz 
above 1/2 Crossover) 

22 MHz

Figure 3.3.4: Left - Level diagram showing the locking frequency and corresponding frequency
in reference to 41K. In particular we lock blue of the cross-over feature of the abundant isotope,
which results in a red-detuned cooling beam on the target species. Right - Schematic of the
DLX110 that is locked to this transition. It feeds the tapered amplifier while also providing
sufficient 2D-MOT cooling light.

The remainder of light necessary for cooling and trapping potassium are derived as follows.

Amplified cooling light from the BoosTA is first coupled into a Thorlabs single-mode PM630 fibre

with a 18 mm Shcäfter Kirchhoff optical coupler with approximately 70% coupling efficiency.

This is necessary as the spatial mode output of the BoosTA is poor and must be cleaned for
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efficient use in the remainder of the system. As a result, only 1 W remains for coupling to the

main experimental chambers. The remainder of beam manipulation is done by multiple passages

through 110 MHz AOMs. After these multiple passages, Fig (3.3.1), we are left with four distinct

beams with differing frequencies. These are the 3D-MOT cooling and 3D-MOT repump beams,

as well as the 2D-MOT cooling and 2D-MOT repump. Some of these are cascaded, such as

how the 3D-MOT cooling is derived from the 3D-MOT repump which is derived from 2D-MOT

cooling, which must be considered when optimising the performance of the system.

3.3.5 Beam Combination and Fibre Launching

Following beam manipulation, there are six trapping and cooling beams that must be coupled

into five different optical fibres for use at the vacuum apparatus. The 3D-MOT beam contains
87Rb cooling and 41K 3D cooling and repump light. 87Rb repump is brought in on a separate

fibre, as only a small amount of power is required for a efficient cooling and trapping. Originally

all four wavelengths were to be brought into the 3D-MOT distribution board, on a single fibre,

however the dichroic waveplates on-hand and required to do so, were not zero-order for 766.7 nm

and any combination of all four wavelength wavelengths would result in a loss of ⇡ 20% power

from one of the 41K beams. The combination of these frequencies involves the mixing and

overlapping of the beams via the use of wave plates and beam cubes, observed by tracing the

beam pathways in Fig (3.3.1). The 3D-MOT fibre then couples to the distribution board that

controls splitting and power balance between the three pairs of orthogonal beams required for

3D-MOTs, Fig (3.3.5). A small glass slide picks off a portion of this power, before entering the

distribution region, for use as imaging light.

In contrast to the 3D-MOT beam, the 2D-MOT beam does not couple all required frequencies

into a single fibre before delivery to the vacuum chamber. Instead, two are derived from the free-

space coupling without an intermediate fibre. Similar to the 3D-MOT, the three wavelengths of
87Rb cooling and 41K 2D cooling and repump are combined to a single beam via various wave

plates and beam cubes before being split into the vertical and horizontal 2D MOT fibres. After

this split, the two beams have well defined polarisation and adding the 87Rb repump will not

cause power losses. This is done only on the horizontal beam, Fig (3.3.1).
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Figure 3.3.5: Distribution board for separating the single 3D-MOT fibre containing three fre-
quencies into the six beams required to cool and trap atoms in three orthogonal directions. The
wave plates and beam cubes allow for precise power balance and control. Each fibre couples with
approximately 85 ! 90% efficiency. An extra waveplate is provided in the first reflected pathway
to dump specularly-reflected s-polarised light.

3.4 Magnetic Coils

The remaining major experimental infrastructure to be discussed are the magnetic coils used to

produce quadrupole fields for the 2D and 3D-MOTs, magnetic transfer sequence, and bias field

production at the science cell. The novel coil and heat dissipation design of the 3D-MOT side

coils resulted in a technical publication [158]. While this paper describes the primary iteration

of the design a manufacturing fault of the glass chamber meant a second iteration was required

for appropriate dimensionality.

The production of controllable magnetic fields for cold atom experiments has been the subject

of extended study [159], and benefits from the advancement of conventional electromagnets in

other fields. Generally, magnetic coil designs tend towards maximising current density through

the coils which is limited by heat dissipation capabilities [160, 161]. One common solution,

to maximise heat dissipation, is the use of hollow-core conductors, allowing for water cooling

through the wire core. However when using low current power supplies to drive coils, achieving

high fields necessitates large numbers of turns, N , and thus high pressure coolant systems as the

viscous resistance scales with N3 [162, 163]. This use of hollow or solid core wire is common in the
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cold-atom community as it is easy to construct and demonstrate moderate cooling capabilities

sufficient for most systems. Due to the individuality and broad scope of modern cold-atom

experiments and differences in ‘build’, it is necessary to constantly improve design.

Recent innovations by Sabulsky et al. have demonstrated a modified Bitter-type electromag-

net consisting of axially-stacked copper arcs with highly efficient heat dissipation [164], demon-

strating a temperature change of 8 �C/kW. The design is easily extended to include greater

numbers of arcs, without restriction of coolant flow, and achieves a turn density of > 0.77 turns

mm�1, but may limit optical access and requires technical machining. A radially constructed

electromagnet, by Ricci et al. has also utilized ducts for an improved cooling arrangement,

but with relatively low copper fill and turn packing ratio [163]. These designs are not read-

ily extended to include adjacent and overlapped magnets which is required magnetic transfer

schemes [165, 166, 167].

In our experiment a 6 kW power supply, with maximum current output of 100 A, is available.

An optimal coil design required a high number of turns, to produce the required field gradients

(160 G/cm for efficient microwave evaporation), while also considering the physical dimensions of

the coils due to spatial constraints around the cell and optical access. Given the small distance the

atomic cloud must be transferred to reach the science cell, we elected to have a three-coil transfer

system, section 4.2.2. Given these constraints the free variable to optimise for our coils was turn

density. This rejected the usage of conventional hollow core wire and cooling methods. Here we

present our novel, high-turn density, electromagnet coil design arrangement that combines the

structural simplicity of conventionally wound coil while maintaining large cooling surfaces.

3.4.1 Magnetic coil design

In order to achieve high turn densities we elected to construct the coils by concentrically wound

EMI insulation foil. The wire itself consists of 25.4 µm insulating Kapton bonded onto 127.0 µm

thick copper of varying height (Alpha-Core Laminax-B), Fig (3.4.2). Prior to assembly the

Kapton was trimmed to be flush with the copper and adheres to only a single side of the foil.

As such when wound upon itself each turn is electrically insulated. This material enables a fill

factor, ratio of conductor to cross-sectional area, of up to � = 0.83. However, this disables the

possibility of passing coolant in parallel with current, similar to conventional coils, but provides

cooling surfaces along the axial faces of the electromagnets. Three sets of coils, for use in (anti-

)Helmholtz configurations were constructed via the radial winding of the copper tape over a PVC

form, matched to the required dimensions, Fig (3.4.1).



3.4. MAGNETIC COILS 81

Figure 3.4.1: Left - The set-up for winding coils. A loose spool feeds over several pulleys before
being wound about a PVC form. The brake that maintains tension and guides the foil onto the
PVC piece is not pictured. Right - Fully wound coil set prior to thermal epoxy bonding.

The construction procedure underwent several iterations in order to produce usable electro-

magnets. In order to bond the coils, such that they would not unravel, a thin layer (0.3 mm) of

thermal epoxy (Cotronics 128, thermal conductivity 4.3 W/Km) was applied to the axial faces.

A earlier method used regular glue to bond each layer to its neighbour, however this rapidly re-

duced the fill factor, �. Further, with moderate powers passed through the coil the epoxy would

deteriorate. thermal epoxy was ideal, despite reducing thermal conductivity between the copper

and coolant, as it provided a protective layer to resist corrosive effects. Despite being a thin

layer, water ingress has not been seen to occur and deemed sufficiently insulating. The epoxy is

also electrically insulating but this feature is unimportant as even uncoated copper coils present

no shorts between layers. In order to achieve maximum fill factors, constant high tension during

the winding was crucial. Furthermore, surface uniformity is highly desirable for small coils to

remove any inhomogeneities of the produced field and to stack coils closely. To maintain the

flatness, a guiding channel with adjustable tensioning ‘brake’ was made from PVC and placed

between the spool and coil winding guide. In total our coil system consists of two identical pairs

of three different coils (I, II & III). The properties of each coil, including number of turns N
i

,

inner and outer radii r
i

& r0, fill factor � and turn densities are summarised in Table 3.1. Coil I
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Coil N (turns) r
i

(mm) r
o

(mm) �(%) Turn density (mm�1)
I 39 40 47 69 5.6
II 112 15 35 72 5.6
III 58 45 55 74 5.8

Table 3.1: Physical parameters of our quadrupole producing coils used on the main apparatus.
A second set of coils exists to be placed in (almost) anti-Helmholtz configuration.

and II only sustain relatively moderate, time averaged, powers in the experimental sequence and

thus constructed from a single continuous piece of 12.40 mm high foil. Coil III, however, must

sustain higher powers for greater times and is constructed from two 6.35 mm coils connected

in parallel, their cross sections and relative locations are shown in Fig (3.4.2). This two coil

approach enables greater surface area for cooling.

Figure 3.4.2: Cross section of our coils showing the relative positioning and Kapton sizes (mm).
In particular Coil III is constructed of two smaller electromagnets connected in parallel for greater
cooling capacity. These are encased by machined Macorr providing channels along the axial
faces of coils for heat dissipation.
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3.4.2 Cooling design

Machined Macorr, a glass-ceramic, provides channels through which heat is removed from the

coils, Fig.( 3.4.2). This material is non-magnetic and non-conductive, eliminating eddy currents

and advantageous when rapidly changing the magnetic field. It further demonstrates a low

thermal expansion (coefficient of expansion of 9.3 ⇥ 10�6 /�C) and temperature stability up

to 1000 �C. For use as a magnetic transfer circuit the coils must be overlapped at alternating

heights. Viton spacers are placed on the axial faces of the coils to create 3 ! 5 mm channels

for coolant to flow over these surfaces. Optical access to the glass cell is provided through the

central regions of Coils I & III, via bored holes, Fig.( 3.4.3). Electrical connections are fed out

through the centre coil.

The coils are placed within the Macor hold and sealed via a PVC lid with a small, 2 mm

lip within the coil voids made water tight by a bead of silicon sealant forming a gasket. These

lids are held via 5 mm M3 nylon screws. Coolant (water) is brought, and removed, into the

Macor cavity by 8 mm flexible tubing through a thread-to-push-in adapter. Flow is provided

with a commercial aquarium pump (Eheim 1046) with a pressure of 0.12 bar and maximum

flow of 300 lph. The flow rate is mediated by a manual ball valve, with a maximum rate of

Q = 2.8(2) L/min through a single hold, limited by pump pressure and tubing size. Heat is

removed from the active coolant through the combination of a 20 L reservoir and chiller unit

(Hailea HL-380CA) set to 20 �C. K-type thermocouples were also attached to the electromagnets

in order to monitor the surface temperature.

3.4.3 Control and Safety

In order for electromagnets to do useful work in the system the current passing through them must

be well controlled, known and stable. Here this is achieved via a feedback stabilised MOSFET

control circuit. Power for the coils is provided by a 60 V, 100 A supply (Delta Elektronica

SM60-100) run in CV mode. In order to have control over the current through an individual coil

a control circuit creates a variable resistance in series with a coil pair via the moderation of the

gate voltage on a high-power MOSFET (IXYS-IXTX200N10L2), Fig. (3.4.4). For a given voltage

range the response of the MOSFET will also be linear. During operation of the coils both the

MOSFET and the individual electromagnets dissipate the power passed through them resulting

in an increase in their temperature and subsequently changing their resistance. This would

produce a gradually changing magnetic field if not well controlled, which is highly undesirable
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Figure 3.4.3: Photograph of the coil pairs wound and situated within the Macor hold. Noticeably
there are differing radii and optical access through coil I and coil III representing the required
access at each point. In particular the larger internal radius of coil III is necessary in order
to get a microscope objective close to the glass cell for high resolution imaging. Through coil
I only counter propagating 25.4 mm diameter MOT beams are required. Also shown are the
sealing PVC ‘lids’ which have a lip to hold the coils firmly and provided a surface to seal against
internally so no water can leak or air ‘sucked’ in.

for most applications in the experiment. In order to compensate for this, a negative feed back

loop is provided via a hall probe (S25P100D15Y) for measuring the current and an op-amp,

which serves to stabilise the current in response to current changes, Fig 3.4.4 (right). As the

magnetic field is proportional to the current passed through the coils the field is stabilised.

In order to protect the analogue control box that supplies, the gate signal to set the current

through the coils, and from any unintentional analogue input is passed through a unity gain

op-amp buffer before passing through a low-power MOSFET. The analogue signal will only

be passed to the feedback op-amp if a TTL input, on the gate of the low-power MOSFET, is

positive. This TTL input is supplied via a optoisolator, which separates the digital control box

from the coil circuit, Fig 3.4.5 (left). Three versions of this circuit are run in parallel from the

main power supply to drive the three electromagnet pairs individually. During operation the

MOSFETs must dissipate moderate powers, and if left thermally isolated, would break down.

As such these elements were clamped to a water-cooled steel block via silicon heat-transfer pads

to keep them within operational temperatures in the main circuit box Fig 3.4.5 (right). Since

completing laboratory work this has been updated and each MOSFET has its own 3D-printed

enclosure and aluminium water cooled module that electrically isolates them while providing

superior heat dissipation.

Seen in the control circuit diagrams are flyback diodes, which are used to allow current to
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Figure 3.4.4: (Left) Schematic demonstrating basic function of the coil control circuit. A signal
applied to the gate of the MOSFET will change the effective resistance from the 60 V supply to
ground. As such a change is gate voltage will alter the current through the coil. (Right) Coil
control circuit with feedback circuit implemented. As the coils and MOSFET change resistance
the current through them will change. This change in current will produce a signal to feed to
the negative terminal of op-amp forcing the output to change until the inputs of the op-amp are
equal.Core	Circuit	Design	

 

Figure 2: Circuit Diagram of coil, feedback circuit and interlock 

The box contained almost the entire circuit; only the power supplies, input signals and coils were 
done outside. The individual parts of the main control circuit (figure 2) are explained qualitatively in 
this section. 

Coils and IGBT 

The circuit uses a 60V power supply to run the magnetic coils. Because the system uses a constant 
voltage source, the resistance of the path to ground through the coils is inversely proportional to the 
current through the coils. This means that by using this constant voltage source, the current (and 
therefore the magnetic field strength) can be controlled using a variable resistor in series with the 
coils. 

The circuit creates this variable resistance using an Insulated-Gate Bipolar Transistor (IGBT) to vary 
the resistance in the circuit. An IGBT is a type of transistor which does not allow current to flow 
between the gate and the emitter. This device instead uses the voltage at the gate to control the 
resistance between the collector and the emitter. However, the relationship between the gate 
voltage and the resistance through the IGBT is not linear. Also, the high currents traveling through 
the IGBT will cause the device to heat up. This will decrease the resistance of the IGBT and cause 
more current than desired travelling through the circuit, heating it up more. To account for these 
problems there will need to be a feedback system in place which will use the current through the 
coils and IGBT to influence the gate voltage. 

Completed System 

Figure 3.4.5: Schematic (left) of the three parallel circuits used to drive the coil pairs. The main
elements are the driving power supply with current regulated by the high-power MOSFET. The
circuit box (right) shows the parallel connections for the three coil circuits from the 60 V. The
components all are secured to a large aluminium block. Viewable is a copper pipe, which follows
a serpentine pattern underneath and provides water cooling to the aluminium block, as a result
anything that is in thermal contact with the aluminium may dissipate heat readily.

flow back into the power supply when the coils are abruptly turned off for avoiding a high voltage

spike on the MOSFET drain. For coil pairs I & II a regular diode was sufficient however the

‘switch off’ time at moderate currents is too long for coil pair III, used to provide confinement
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Figure 3.4.6: Individual MOSFET cooling module that provides superior heat dissipation capa-
bilities then the original cooling method. A MOSFET is pressed between the cap and cooling
block with silicon heat paste maximising thermal conduct between the block and the MOSFET.
Water is brought in and out by flexible tubing that connects to the aluminium cooling block. As
the base and cap are 3D printed components the MOSFETs are electrically isolated from one
another. Previously a silicon pad had to be provide insulation as the cooling block housed all
MOSFETs.

in the science cell. As such, a Zener diode clamp [168] is used instead to rapidly decrease the

current decay through the coils when signalled off ( ⇡ 50 µs at 60 A)

While the coil driving circuit provides sufficient control over the current and turn on/off

of current through the coils it does not protect it against some unforeseen or unintentional

behaviour or component failure. In particular if the cooling water stops flowing, or a control

circuit fails the coils may overheat and result in a catastrophic failure. As such, an interlock

circuit is present that monitors the temperatures of each coil, temperatures of each MOSFET,

the current through each coil and the flow rate. In particular K-type thermocouples are read

into an Arduino Uno via MAX31855 thermocouple amplifiers. A brass hall-effect flow rate meter

is also monitored by the Arduino and determines the flow rate by measuring the frequency of

the rotor. Similarly, Hall probes monitor the current through each coil, which the Arduino

converts to a current. Each interlock ‘cycle’ the Arduino measures these values and compares

them to pre-set maxima/minima. If they fall outside these ranges the power supply interlock is

toggled, and current can no longer be drawn. As an additional precaution, the Arduino itself is

interlocked to prevent any failures associated with itself. In particular if it becomes inactive a

555 ‘watchdog’ circuit [169] will restart the Arduino making it trip the interlock and reinitiate
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the interlock checking procedure. If the Arduino interlock circuit does activate then the interlock

will not be reversed until a N/O push button is manually pressed by a user. These additional

precautions prevent any unspecified or sporadic operation of the coil cicuit.

Briefly, additional modifications to the Coil pair III control circuit exist. This is the ability

to switch from quadrupole field producing anti-Helmholtz configuration, required for magnetic

trapping and evaporation, to bias field Helmholtz configuration through a pair of relays. Further

an additional control circuit, between the two coils, is present enabling the coils of the pair to

run at different currents. This will, in the future, allows us to move the vertical position of the

cloud for imaging with the highest resolution 0.65 NA microscope objective.

3.4.4 Coil Performance

The inductance, resistance, volume available, and operation temperatures are crucial constraints

in coil design determining the maximum attainable field, or field gradient for anti-Helmholtz

coils [163]. Here we discuss these parameters and cooling performance, as used on the apparatus.

Resistance was derived from current measurements through a shunt resistor, R0 = 1.00(1) ⌦

and voltage across the coils at low test currents. Field characteristics and thermal properties

were investigated by varying current through the coils in 5 A intervals from I = 0 ! 50 A

for single coils and monitoring coil temperature by change in resistance, this is characterised

as temperature rise per kW, K
i

. Field strength was measured with a linear Hall effect sensor,

(Honeywell SS94A1F) at a set distance from the centre the coil. This was used to calculate

the field gradients when in anti-Helmholtz configuration with known separation, z0, and relative

position along transfer axis x0. The results are summarised in Table 3.2.

Coil Pair Resistance (⌦) Average separation (mm) Axial Gradient ( G
cm A ) K

i

�C/kW
I 0.25 78 1.6 50
II 0.39 113 1.7
III 0.42 79 2.1 35

Table 3.2: Performance of our coil and cooling system. These are results for the coil pairs with
current flowing in series while water is brought in parallel for the two Macor r coil cases. Axial
gradients for on-apparatus separations were calculated from measurements on the absolute field
G/A at a fixed distance from a single coil. Temperature data for coil II is not relevant as it is
only on for 0.8 s each 40 s

Noticeably, Coil pair I has a resistance approximately half that of the other coils owing

to its small width and lower number of turns. During the magnetic transfer sequence this is

undesirable as it forces too large a voltage drop across the controlling MOSFET resulting in
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failure. To remedy this a 0.2 ⌦ high-power resistor circuit is placed in series with the coil. The

coolant is brought in parallel to the two Macorr coil cases resulting in a pump-limited flow rate

of 3.8 ! 4.5 L/min. The temperature rise with reference power allows the maximum sustainable

power input to the electromagnets to be calculated. This is defined as the boiling point for the

water bath, initially cooled to 20 �C, calculated to be 2 kW and 2.85 kW for coils I and III

respectively. Long time thermal steady state maximum field gradients are then calculated as

170 G/cm and 210 G/cm, respectively. Our coils do not operate near these values, due to safety

considerations and limited available current.

Ultimately, the achieved magnetic field is dependent on the highest sustainable current den-

sity, limited by the cooling efficiency and additionally dependant on potential power loss mech-

anisms such as switching elements and contact resistances of connected leads. To gauge the

performance of our coils we compare our design with similar hollow core copper wire designs of

identical volume as Coil III. A standard hollow copper square tubing (3.18 mm with a 1.55 mm

bore) would occupy 24 turns and length of 8.2 m, assuming perfect winding � = 81 %, dissi-

pating 1 kW at 241 amps to achieve the same maximum field. A water flow rate of 0.40 L/min

would be required for same temperature rises requiring a 12 bar power head, a 100-fold increase.

Despite the lower operating power, the higher currents and large water pressure required may

present practical challenges. We have thus developed a novel alternate design for low-current

power supplies, which also only require low pressure water cooling.

3.5 Summary

This chapter surmises the bulk of the work completed in the first year of the project, encapsu-

lating the design and construction of the crucial infrastructure of the apparatus. In particular

the time was devoted to the development of the whole laser system, frequency and intensity

stabilisation, and the optical system to deliver it to the vacuum apparatus. This vacuum cham-

ber was built, baked and re-baked several times. Additionally, the main electronics necessary

for control were designed and constructed. The timely process of designing and optimising of

the coil system was also completed and their novel design and cooling capacity resulted in a

technical publication [158]. From here, research work focussed on the experimental pathway to

condensation that requires these backbone elements.



Chapter 4

Performance

After the main backbone infrastructure was set in place, we began the task of producing Bose

Einstein condensates. This is a multi-step procedure that required:

1. Production of a high flux cold atomic beam in the 2D-MOT that could be forced through

the differential pumping tube.

2. Capture of atoms from the atomic beam in the 3D-MOT.

3. Optimal number transfer from the 3D-MOT into a magnetic trap.

4. Magnetic hand-off procedure to move the cloud from the 3D-MOT chamber to the science

cell.

5. Microwave induced evaporation and loading into a hybrid trap.

6. Optically induced evaporation to produce condensates.

The culmination of my time within the laboratory resulted in the production of 87Rb condensates

and 41K 3D-MOTs. The procedure for condensation requires adequate performance of each

discrete element and is summarised as follows. In our experiment the 2D-MOT first produces a

beam of atoms that feeds the 3D-MOT. Once a sufficiently large number of atoms are captured

the cloud is compressed and transferred to a purely magnetic trap. The three pairs of coils are

then used to transfer the atoms from the 3D-MOT chamber into the science cell where they may

be loaded into a hybrid trap consisting of a single 1064 nm dipole beam and the quadrupole

magnetic trap. Subsequently, microwave evaporation can be used to cool the remainder 87Rb

89
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atoms until a condensate is formed. In this chapter we discuss each step of the system in detail

to quantify and evaluate the systems performance.

4.1 2D & 3D Magneto Optical Traps

The basis for a stable and efficient ultra-cold atom experiment is the ability to first capture and

cool a large number of atoms. Here we do so with a 3D-MOT in line with the majority of BEC

experiments. The future of our experiment relies on the simultaneous collection and cooling

of 87Rb and 41K atoms, in the glass 3D-MOT chamber, fed by a cold atomic beam from the

2D-MOT chamber. The operating principles of laser cooling have previously been discussed in

Section 2.1.

4.1.1 2D-MOT

In order to produce large atom-number condensates, a large number of atoms must first be

trapped in the 3D MOT. Loading the 3D-MOT from a background gas, located in the same

vacuum chamber, is not desirable as it restricts trapping lifetime and atom number. The dif-

ferentially pumped system eliminates these issues by having the background source separate

from the 3D-MOT. In order to feed the 3D MOT, a high-flux, low-velocity atomic beam is

produced with a two-dimensional magneto-optical trap (2D MOT). A 2D-MOT can produce a

well-collimated atomic beam with high flux of cold atoms quite easily. This is done by a pair of

racetrack coils, which with current appropriately running through have a node along the central

axis, with two pairs of orthogonal, counter propagating laser beams between them. This com-

bination confines atoms to a cylindrical region at the centre of the apparatus. In reference to

Fig. (4.1.1), this means atoms are trapped in the z and y direction, but free to move along x.

Here our racetrack coils are wound over rectangular aluminium forms, measuring 150⇥50 mm.

120 turns of 0.615 mm diameter copper enamelled wire was wound about these, and mounted

around the 2D-MOT chamber such that differential pumping tube is centred between the coil

pairs. This results in a spatial separation, between the inner faces of the coils, of 92 mm. This

yields a transverse magnetic field gradient of 4.33 G cm�1A�1. In general, each coil has 2.5 ! 3 A

passed through them, producing an operational field gradient of B0 ' 13 G cm�1. This vanishes

along the propagation axis that connects the 2D-MOT chamber to the 3D-MOT region. These

coils were designed using the freeware Radia package, for Mathematica.

In order to cool atoms sufficiently, for them to remain in the magnetic node long enough to
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Figure 4.1.1: 2D-MOT racetrack coil design and field topography. (Left) The racetrack coils
configuration of our 2D MOT. By running each pair in anti-Helmholtz configuration a node
along the propagation axis (along the X direction) exists, seen in the field topography images
(Middle) and (Right). As such Doppler cooling and trapping in the Z and Y is provided and
atoms may move freely along the X-axis node to produce a ‘beam’ of atoms.

produce a beam, they must have a sufficiently long interaction time with the cooling beams. An

atomic gas will have a thermal distribution of velocities as such, the most efficient way to produce

a high flux atomic beam is to focus on cooling over a large area. Here this is accomplished by

expanding the beams in one direction before passing them into the 2D-MOT chamber, Fig 4.1.3.

The limiting factor in how wide the cooling area can be is the physical constraints of the system

and power available. Here the windowed region of our 2D-MOT chamber limits us. 2D-MOT

cooling light, fibre coupled from the main laser system, is brought to the 2D-MOT chamber and

collimated to produce a 12.0mm diameter beam. These collimators also house quarter wave plates

producing the circularly polarised light required for cooling. Before the beams are sent through

the 2D MOT windows they are expanded along the propagation axis by a pair of cylindrical lenses.

This cylindrical telescope consists of f1 = 50 mm and f2 = 200 mm lenses. The beam is then

expanded, by a factor of 4, in the longitudinal direction of the 2D MOT. At this point, the beams

are collimated and ready to project through the 2D MOT chamber. The counter-propagating

beams are supplied by retro-reflecting these beams, with prism retroreflectors Fig. (4.1.3) (c).

While this reflected beam will have a reduced power, compared to the incident beam, this power

loss is negligible for 2D-MOT operation. This method is desirable as it mitigates the need for

extra power and infrastructure of two additional beams.

The 2D-MOT beams, altogether, contain four different frequencies of light. The horizontal

beam has 87Rb cooling light, and both the cooling and repump light for 41K. The vertical beam,

however, contains these three frequencies as well as 87Rb repump. This configuration provides

Doppler cooling in two-dimensions, resulting in atomic vapour localisation about the node of the
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Figure 4.1.2: (a) Schematic of the two-dimensional MOT illustrating the how the cooling beams
and racetrack coils operate. First light must be expanded along the propagation axis via a
cylindrical telescope (b) before they are retroreflected by prisms (c) to produce the counter
propagating beams. This provides transverse cooling of the atomic beam while the atoms thermal
velocity along the longitudinal 2D MOT axis allows a beam to form. A ‘push’ beam directed
along the beam direction enhances the flux immensely.

quadrupole field. A low power push beam, derived from the 2D-MOT beams in the laser system,

promotes atomic flux through the differential tube into the UHV section of the vacuum system,

where they may be collected in the 3D MOT. Independent control of each coils magnetic field

contribution and 2D-MOT beam alignment and power allow for tweaking of the 2D-MOT.

The 2D-MOT produces a two-dimensionally confined cloud that will move through the dif-

ferential pumping tube as a bright atomic beam. Although no explicit dampening of motion

along the beams axis exists the physical dimensions of the differential tube and filtering effect

of the 2D-MOT can keep the atomic beams mean speed as low as hv
z

i ' 20 m/s [170]. This is

due to the fact that only atoms with relatively low axial velocity will spend enough time in the

trapping region to experience sufficient atom-light interactions to pass through the differential

tube. Optimal power and detunings are presented in Table 4.1. Normally the 2D-MOT is op-

erated for 10 ! 15 s at which point the number of atoms in the 3D-MOT saturates. Loading
87Rb, atoms into the 3D MOT, at a rate of ' 2 ! 5 ⇥ 108 atoms sec�1. Numbers on 41K load

rates are currently unknown but the 2D-MOT can create an atomic flux of 41K. The total flux,

from the 2D-MOT, is most likely not optimised as the power and detunings are optimised on the

3D-MOT atom number and not the atomic flux.

The end of the copper differential tube is cut and polished to produce a 45 � titled mirror.

This mirror allows us to send a hollow beam along counter to the atomic flux, to reduce the
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Laser Parameters
2D Magneto Optical Trap

Beam Detuning [�] Power/beam [mW] Intensity [mW/cm2]
87Rb 2D Cooling �2.75 38 8.4
87Rb 2D Repump 0.0 3 0.7
41K 2D Cooling �2.5 35 7.7
41K 2D Repump �3.0 35 7.7

87Rb Push Beam (Cooling) �2.75 0.4 4

3D Magneto Optical Trap
Beam Detuning [�] Power/beam [mW] Intensity [mW/cm2]

87Rb 3D Cooling �2.75 8 7.1
87Rb 3D Repump 0.0 4 3.5
41K 3D Cooling �2.0 10 8.8
41K 3D Repump �4.0 8 7.1

Table 4.1: Summary of the 2D/3D-MOT parameters that produce optimal 87Rb & non-optimised
41K. Detuning of beams refer to the |F = 2i ! |F 0 = 3i and |F = 1i ! |F 0 = 2i transitions for
the cooling and repump beams, respectively.

velocity distribution. This may be beneficial to produce lower velocity atomic beams that may

enhance our capture rate and atom number in the 3D MOT, but has not yet proved necessary

to implement.

In summary, the 2D-MOT is fully operational and continues to effectively produce cold atomic

beams of 87Rb and 41K beams, which can be captured in the 3D-MOT.

4.1.2 3D-MOT

Once the laser infrastructure and coils of the 2D MOT were sufficiently aligned and optimised

both it and the 3D MOT performance could be evaluated. The 3D MOT (laser schematic shown

in Fig (4.1.4) (a)) consists of three pairs of orthogonal, counter propagating beams that intersect

at the centre of the glass octagon. Shown in the schematic are the two planar pairs while the

vertical beams are entering and leaving the page respectively. Unlike the 2D MOT the counter

propagating beams could not be formed from retroflections, as the expected loss in power would

cause a non-negligible asymmetry at moderate powers that would hamper the performance. The

vertical beams are sent along the planar axis before being reflected into/out of the page.

Each 3D MOT beam contains cooling light for 87Rb cooling and both 3D cooling and 3D

repump frequencies for 41K. These beams are expanded from the fibre and collimated to 25.4 mm

diameter. The light has its polarisation set to be circularly polarised by quarter waveplates, as

required for correct operation of the 3D-MOT. Having these polarisations set to within a few
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Figure 4.1.3: Schematic (left) and render (right) of the differential pumping tube showing the
tilted mirror and the two-stage bore in through the centre, units in mm. Proximal to the opening,
at the mirror end, the conductance is limited by a small aperture tube which then is then opened
to a larger tube.

percent was found to be crucial for highly symmetric, large atom number MOTs. 87Rb repump

is brought in separately, collimated to a 25.4 mm diameter beam and brought in from the science

cell end of the experiment. Repump is brought in from this direction as it can then be used,

regardless of the location of the atomic cloud, whether at the 3D-MOT location or at the science

cell. Alignment of MOT beam pairs is done by aligning one to the centre of the two windows of

the glass octagon, with the reciprocal laser aligned to this beam, ensuring symmetry. Centred

above and below the glass octagon is coil pair I, housed in the Macor holds. During 3D-MOT

operation 6.6 A are passed through the coils to generate the three-dimensional quadrupole field

with a gradient of B0 = 10.5(5.3) G/cm in the axial (radial) direction. Using typical powers and

detunings, shown in Table 4.1, 3.0 ! 5.0 ⇥ 109 87Rb atoms, and an unmeasured number of 41K

atoms, may be caught at the centre of the glass octagon. An absorption and fluorescence image

of 87Rb and 41K atomic clouds is shown in Fig (4.1.4) (b) & (c) respectively. We are able to

produce each of these clouds separately as well as concurrently illustrating the point at which

the experiment became officially ‘dual-species’.

In short, the 3D-MOT adequately contains large numbers of 87Rb and some 41K that can

be used to move towards producing Bose Einstein condensates. In order to troubleshoot our

apparatus, techniques and methods it was elected to focus on doing so initially for 87Rb. Expe-
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Figure 4.1.4: (a) Schematic of the 3D MOT optics set up showing four of the six cooling beams,
the 87Rb repump and imaging path. The imaging system is out of focus in regards to the atomic
cloud at the 3D MOT location and spatial information cannot be obtained while atom number
can. (b) Fluorescence image of a 87Rb cloud and (c) fluorescence image of a 41K cloud.
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rience and literature on what constitutes adequate performance for rubidium is abundant, and

therefore any systematic errors could easily be determined by only looking at this one species.

If we had attempted to simultaneously progress with both species, any difficulties arising from

interspecies interactions would not be readily distinguishable from systematic problems. As a

result the remainder of this thesis deals only with 87Rb.
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4.2 CMOT, Magnetic Trapping and Transfer

The initial cooling and trapping of atoms in the MOT stage produces cool and relatively dense

samples, where temperatures of the order of 100 µK are reached. Yet atoms still have a gain sev-

eral orders of magnitude in their phase-space density before the emergence of a BEC is expected.

This is not possible with dissipative confinement of magneto-optical traps. Due to the stochastic

nature of heating, due to multiple absorption and reemission cycles, any further reduction in

temperature is not possible. A way to avoid this is to load the atoms into a purely magnetic

trap, where no atom-photon processes take place. From here a range of pathways are available to

move towards quantum degeneracy. Here, this involves moving confinement from the 3D-MOT

to a purely magnetic trap, before transferring the cloud to the science cell. Subsequently, ad-

ditional cooling can be done to reach low enough temperatures such that a condensate emerges

from thermal profile. Here we discuss the methods and performance for the initial magnetic

trapping and transferring procedure.

4.2.1 CMOT, Bias field and Magnetic Trapping

In general, purely magnetic traps require a much larger field gradient to compensate for the

loss of the optical molasses beams as the atoms move out of the 3D-MOT. This corresponds

to a smaller cloud volume, but the atoms have the same phase-space density. Thus, prior to

loading, the atomic cloud must be compressed in what is known as CMOT [171]. In particular

we have to compress the atomic ensemble enough so as thought it can efficiently load a 100 G

cm�1 magnetic trap, starting from the 10.5 G cm�1 gradient in the 3D-MOT. If the magnetic

field is rapidly switched, from the MOT value to 100 G/cm, atoms farthest away from the centre

would receive large increase in energy resulting in excessive heating and losses. CMOT prevents

this by significantly increasing the density of the cloud, while also reducing the temperature.

This is accomplished by red-detuning the cooling beam away from resonance and simultaneously

reducing the repump power. As a result, the outward light pressure from within the atomic

ensemble is reduced as the scattering rate decreases. The result is a cloud with less atoms but

higher phase space density compared to the standard MOT. Within this experiment, the 87Rb

cooling light is scanned from �2.75 � ! �10 � linearly over 40 ms with the repump power is

decreased to ⇡ 10% of its initial value.

Following this compression a large fraction of atoms reside in the |F = 1i manifold as the

power in the repump light is not sufficient cycle them back into the |F = 2i state. We further
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encourage this by a 2 ms optical depumping stage where the repump is completely switched off

and the cooling light remains on. This forces the remainder of atoms to move to the |F = 1i state.

This ensures a purity of spin states in the magnetic trap, as only atoms in the |F = 1, m
F

= �1i

level are magnetically trappable. This purity of states is, allegedly, crucial to forming a dual-

species condensate of 87Rb and 41K, as discussion with the Inguscio group has indicated that

spin mixtures result in prohibitive losses. During CMOT and the depump process, the magnetic

field is held at an axial gradient of B0 = 10.5 G/cm. At their conclusion the magnetic field

gradient is rapidly changed to 60 G/cm (30 A), trapping 50 ! 60 % (1.5 ⇥ 109 atoms) of atoms

originally held in the 3D-MOT. Following this the gradient is increased to 100 G/cm (60 A) over

100 ms. While precluding any formal, or intentional, sub-Doppler cooling processes, the 87Rb

atoms re-captured in the magnetic trap, when optimised, are generally colder then the Doppler

temperature, sitting at 80 µK. We are okay with this.

Cooling beam detuning, sweep times and power reduction of the repump are all parameters

that must be optimised in CMOT. However, to prevent heating and thus achieve the highest

phase space density within the magnetic trap, the CMOT cloud centre must be well aligned with

that of the magnetic trap. This means the six orthogonal MOT beams must be well aligned and

power balanced. This is observed by looking for isotropic expansion of the atomic cloud when

the magnetic field is switched of, as well as the persistence of the molasses. However it is difficult

to perfectly align the centre of the MOT beams with the zero of the quadrupole field. In order to

fine-tune the field minimum, for optimal magnetic trap loading, three small electromagnets are

used to ‘push’ this minimum about. These coils consist of 40 turns of 0.6 mm diameter enamelled

copper wire wound to 50 mm diameter. These three single coils were placed orthogonally and as

close to the cell as possible, however more recently coil pairs have been added and show greater

stability. . Small currents can be passed through them to compensate for small misalignments

and spurious magnetic fields. The current through theses coils is not permanently fixed as

small drifts in alignment or power balance, in the MOT beams, generally requires the occasional

‘tweaking’ of bias coil current. Generally, however, they have 400 ! 900 mA passing through

them. The precise numbers are determined by maximising the atom number and temperature of

atoms transferred into the magnetic trap.

4.2.2 Magnetic Trapping and Transfer

Once the atomic cloud is loaded in the magnetic trap it has to be adiabatically transported

104 mm until it resides 20 mm from the end of the science cell, adiabatically. Several methods
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to do so exists, each with their own distinct set of advantages and disadvantages. Some of these

include using moving optical tweezers [172, 173], physically moving a quadrupole producing pair

of coils [174, 175, 176] and through a magnetic ‘hand-off’ procedure through a chain of static

magnetic coil pairs [165]. We elected to perform a magnetic hand-off procedure to transfer our

atomic cloud. The optical tweezer method was discounted as vibrational and long-term stability

was considered prohibitive and physically moving a single coil pair precludes the volume it sweeps

out. This would complicate using our microscope objective lens to image the cloud.

The coil chain transfer technique has the advantage of structural and vibrational stability,

provided it is designed adequately, and allows for high optical access. Disadvantages of this

technique are the need for additional electronic control circuitry and increased electrical power

requirements. These elements can be mitigated by using as few coils as possible and making

certain their design.

Theory

Transfer is accomplished by moving the magnetic field minima from the initial magnetic trap

location to the science cell. This corresponds to application of appropriate current ramps through

the three coil pairs that surround that 3D-MOT vacuum chamber, Fig (4.2.1). Initially the atomic

cloud lies at the magnetic minima of the quadrupole field produced by a single coil pair. As the

current in the neighbouring coil is increased the centre of the trapping potential is moved, which

the atomic cloud can follow. However, the atoms are no longer contained in a strictly quadrupole

field, and the ‘shape’ of the atomic cloud changes following the topography of magnetic field.

As the current in the second coil pair continues to increase, the cloud continues to be displaced

towards its centre point. By repeating this procedure, with multiple pairs of coils, an atomic

cloud can be transferred over a large distance.

When a coil chain system contains many coil pairs the transport procedure results in the

repetition of the aforementioned transfer process. If done over several coils, the modulation of

the traps aspect ratio could cause heating of the atomic ensemble. In order to combat this an

additional third coil pair can be used. This allows the cloud to be transferred from one location

to the either in a single trap geometry, not consistently stretching and compressing. This aids

in adiabatically moving the cloud. In practice, however, a change is aspect ratio has to occur at

the beginning and end of the transfer sequence.

The axial, B
z

, and radial, B
r

, component of magnetic field, produced from a single magnetic
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Figure 4.2.1: Illustration of the magnetic transfer technique for a two coil pair. First an atomic
cloud is held in a quadrupole magnetic trap by a single pair of coils. An adjacent overlapped
pair is then turned on and the shape and location of magnetic minima changes, which the atomic
could follows. By applying the appropriate current ramps the atomic cloud may be transferred
through a series of multiple coils.

coil is given by,

B
z

=
µ0I

2⇡
p

z2 + (a + r)2

✓
a2 � z2 � r2

z2 + (r � a)2
E2(k

2) + E1(k
2)

◆
(4.2.1)

B
r

=
µ0zI

2⇡r
p

z2 + (a + r)2

✓
a2 + z2 + r2

z2 + (r � a)2
E2(k

2) � E1(k
2)

◆
, (4.2.2)

where z and r is the axial and radial distance from the centre axis of the coil, a is the radius of

the coil, and k2 = 4ra

z

2+(a+r)2 , E1(k2) and E2(k2) the complete elliptic integrals of the first and

second kind respectively. The total field strength given by |B|2 = B2
z

+ B2
r

.

As mentioned, this experiment has three pairs of electromagnets that are used to transfer

the cloud from the 3D-MOT location to the science cell. To do so adiabatically we must slowly

move the field minima while attempting to minimise changes in the clouds aspect ratio. Ideally

we transfer the cloud with a fixed magnetic field gradient and keep the centre of the cloud at a

magnetic field zero. This can be done by finding the appropriate current through each coil for

a given position along the transfer axis. By using the equations for the axial and radial fields

(B
i

), and their derivatives (B0
i

x) as well we can set up a linear system of equations to find the

current, I
i

, through each coil at a given position.
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This set of equation ensures that for any point, x, along the transfer axis the total field

is zero, and the axial and transfer magnetic field gradients B0
z

and B0
x

are fixed. However, as

the atomic cloud must start and finish in a stationary quadrupole field, it has to be ramped to

these transfer gradient values. The most crucial point, then, is to determine these transfer field

gradients, which are subject to a variety of limitations and constraints.

Transport Considerations

The heuristic for successful magnetic transfer, of our atomic cloud, is adiabaticity of the proce-

dure. This requires that the cloud does not undergo any heating and atoms are not lost from the

trap. This is also influenced by the infrastructure related limitations such as the heat dissipation

capabilities of the coils, their physical size, and the amount of current available to be passed

through the coils.

The first consideration is supporting the cloud against gravity, such that losses are not an

issue. The minimum field gradient required to support atoms against gravity is given by,

B0
g

=
mg

g
F

m
F

µ
b

. (4.2.4)

For 87Rb atoms trapped in the |F = 1, m
F

= �1i magnetic substate this gives an axial gradient

requirement of B0
z

= 30.5 G cm�1. Similarly, as atoms must be moved accelerated and decelerated

from/to rest, at the start and end of the transfer procedure, they are subject to accelerations in

the transfer direction. The field gradient must be sufficient to support the cloud against this.

For a given field gradient, in the transfer direction, the maximum acceleration is given by,

B0
y

=
ma

y

g
F

m
F

µ
b

. (4.2.5)

To minimise transfer time, and therefore opportunities for losses via Majorana spin flips and

other methods, we wish to accelerate the cloud as fast as possible, meaning as large a trap

gradient as possible. This is limited by the amount of current available and the heat dissipation

capabilities of the electromagnet cooling system. Here, the cooling capacity is not an issue, and

we are wholly limited by the maximum current our power supply can output, 100 A. With this

constraint, and having a radial aspect ratio of B0
x

/B0
y

= 1.7 as suggested in literature [165, 177],

we are limited to transfer gradients of B0
z

= 100 G cm�1 and B
x

= 64 G cm�1. This provides a
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Figure 4.2.2: Velocity, acceleration and displacement profile of a transfer sequence of the modified
‘Hanning Window’ variety. Axes are arbitrary for each profile, showing ‘smoothness’ at which a
cloud may be accelerated.

maximum transport acceleration of a
y

= 5.8 m s�2.

Using these gradients, the linear current system can be solved along the transfer axis, x = 0 !

104 mm, yielding a function of current in terms of spatial position. However, in the laboratory

this is a temporal problem and I(x) must be transformed to I(t). If a linear conversion is applied

the cloud is abruptly accelerated and decelerated multiple times throughout the transfer process.

This was our initial method, however heating and atom losses were prevalent. To eliminate this

the cloud must have its velocity slowly increased to prevent abrupt accelerations. We do so

by forcing the atoms to have a Hanning window velocity profile. From this we can also gain

expression for the displacement and acceleration of the cloud:

x(t) = kt � ck

2⇡
sin

✓
2⇡

c
t

◆
, (4.2.6)

v(t) = k � kcos
✓

2⇡

c
t

◆
, (4.2.7)

a(t) =
2⇡

c
ksin

✓
2⇡

c
t

◆
. (4.2.8)

Using the constraints outlined above (v(0) = 0 m s�1, max[a(t)] < 5.8 m s�2) the constants

c and k can be found for a variety of maximum accelerations. The precise functional form the

acceleration, velocity and displacement profiles are shown in Fig (4.2.2).
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Figure 4.2.3: (a) Illustration of the transport coils dimensions. The atomic cloud is transferred
from the centre of coil pair I to the centre of coil pair III at steady state axial gradient of
B0

z

= 100 G cm�1 and axial aspect ratio of B0
y

/B0
x

= 1.7. This is done in 810 ms by the
application of current ramps through each coil (b).

System and Performance

With a smooth acceleration profile and knowledge of the steady state transfer magnetic field

gradients the system is almost ready to transfer the cloud. The final consideration is the fact

that due to the finite overlap of the coils, restricted by the amount of optical access required

through their centres, the currents required to transfer the cloud at the beginning and end of

the sequence at the desired field gradients is not always feasible. To mitigate this we use linear

ramps, on the current, to move it to the point where a solution first exists. This holds the axial

gradient at 100 G cm�1 while changing the radial fields. This is done for the first and last 25 mm

of the transfer sequence.

Several current ramps, with differing maximum accelerations, were used to test the perfor-

mance of the transfer sequence. All ramps with a maximum acceleration less than 3 m s�2 would

adiabatically transfer the entire atomic cloud, any faster and losses were present. As 41K will

be implemented into the transfer sequence in the future, a maximum acceleration of 1 m s�2

was chosen to accommodate its smaller mass. This transfer takes a total of 810 ms, with the

current through each pair of electromagnets shown in Fig (4.2.3) (b). At the end of the transfer

sequence approximately 1.0 ! 2.0⇥109 87Rb atoms routinely reside in the science cell at 90 µK,

demonstrating negligible atomic losses from the trap and minimal heating of the ensemble. As a

result the atomic ensemble sits in a B0
z

= 100 G/cm quadrupole field produced by coil pair III,

primed for microwave evaporation.
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4.3 Microwave Evaporation and the Optical dipole trap

Once we have efficiently transferred the atoms to the science cell, the 87Rb atoms are ready

to undergo a two-stage evaporative cooling procedure to force the transition to a Bose-Einstein

condensate. The first step is microwave evaporation to first reduce the temperature of the

ensemble. Additionally this stage will also be used to sympathetically cool 41K. This reduction

is temperature also results in a smaller atomic cloud that is now mode-matched to be loaded

into a optical dipole trap where optical evaporation can be used to produce a condensate.

4.3.1 Microwave Evaporation

Generally, when evaporating a single species it is common to make use of radio-frequency (RF)

transitions from the trapped to untrappable states. This method is preferred as signal generators

and amplifiers in the RF category (kHz to MHz) are readily available. Unfortunately the Zeeman

substate splitting for 41K and 87Rb are almost identical and RF evaporation on one of the atomic

species would also evaporate the other leading to depletion 41K. Fortunately, the large hyperfine

splitting of 87Rb (6.835 GHz) is far from resonance for 41K, making it a viable transition for the

evaporative cooling of 87Rb. In particular, we selectively eject hot 87Rb atoms from the magnetic

trap via the |F, m
f

i = |1, �1i ! |2, �1i transition.

Production & Performance

In order to perform microwave evaporation, we must first produce the signal to irradiate the

atomic ensemble. We accomplish this via the circuit shown in Fig (4.3.1). First, a Valon 5008

dual frequency synthesiser produces ⇡ 15 dBm at 2.950 GHz, before being frequency doubled to

5.900 GHz. Near resonant radiation is then produced by mixing the frequency doubled Valon

signal with a 0.925 GHz signal produced by a programmable Holzworth HSM2001A RF generator.

It is this element that allows the microwave radiation to be brought closer to resonance. Before

amplification, a series of filters remove other frequencies that are produced during the mixing

process, suppressing noise. Sufficient power must be applied to the atomic cloud in order for

the evaporation process to be efficient. Thus, prior to irradiating the atomic cloud, the signal

is amplified. A Khune PA 7000 A amplifier is used, producing 4 W of power. Circulators are

used to protect any high power back reflections from damaging the circuit. After amplification,

the radiation is sent through an impedance-matched horn, which delivers the radiation to the

atomic cloud.
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Figure 4.3.1: (a) Circuit for producing the microwave radiation to evaporatively cool 87Rb atoms
trapped in a B0

z

= 160 G cm�1 quadrupole field. Over a 5 s ramp 1 ⇥ 109 atoms at 100 µK (b)
are irradiated during the sweep until 50 ⇥ 106 atoms at 20 µK remain (c).

One limiting factor for how fast atoms may cool is the rate at which atoms rethermalise. This

is closely related to the magnetic field gradient atoms reside within. In particular, the stronger

the magnetic field gradient the faster evaporation may proceed. As such, the current through

the quadrupole coils (pair III) is ramped from 47.6 A (B0
z

= 100 )G cm�1 to 76.2 A (B0
z

= 160 G

cm�1) over 600 ms prior to beginning the evaporation sequence. Immediately following this,

the microwave radiation is switched on and the evaporation ramp moves the frequency from

6.825 GHz to 6.830 GHz in 5 s. In this sequence 1 ⇥ 109 atoms at 110 µK are evaporatively

cooled until 5.0 ⇥ 107 atoms at 20 µK remain.

4.3.2 Hybrid Trap

Quadrupole potentials have many advantages when used in creating BECs. In particular, their

large trap volumes and tight confinement allow for efficient evaporative cooling. They are also

experimentally easy to produce by way of anti-Helmholtz coils while being physically unobtrusive.

Unfortunately Majorana spin-flips limit phase-space densities to those too small for the emergence

of the BEC transition. These may be mitigated by using additional coils to remove the magnetic

field zero, but this is not always desirable. Similarly, all-optical techniques are not well mode-

matched to an atomic cloud from a 3D-MOT, resulting in small atom number BECs. Here we
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ture scales more weakly than the field gradient at con-
stant entropy, T � (B0)2/3, and weakening the trap will
decrease the loss rate, at the expense of a lower collisional
rate.

The adiabatic transfer is more subtle than a mere ex-
pansion of the trap volume, since in addition to expand-
ing the trap, the shape of the trap is modified. This leads
to changes in phase-space density, even at constant en-
tropy [14], an e�ect used to obtain a BEC of cesium from
a very cold, but dilute gas [8]. In our case, the e�ect is
quite strong, as the transfer process both decreases the
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Bottom: The entropy per particle, S(T )/NkB , for the same
field gradients in the dipole-plus-quadrupole trap (solid lines)
and for quadrupole only traps (dashed lines). The short hor-
izontal marks crossing the curves indicate the regions where
the atoms are transferred into the dipole trap: the upper set
marks where 10% of the atoms are in the dipole trap, and
the lower set marks where 90% of the atoms are in the dipole
trap.

can estimate

�
m

= 3.6
~

ml2

= 1.85
~
m

✓
µB0

k
B

T

◆2

, (8)

where we have ignored gravity. This estimate is inde-
pendent of the elastic collision rate in the trap since it
assumes thermal equilibrium, an invalid assumption at
low densities or large loss rates. Nonetheless, it suggests

(U
-E

0
)/

k
B
 (

µ
K

)

100

80

60

40

20

0

-20

-40

B‘=1.60 T/m

0.45

0.306

 0.90

-60

-40

-20

0

20

40

-200 0 200

0.45

0.306

 0.90

y (µm)

(U
-E

0
)/

k
B
 (

µ
K

)

z (µm)

Along gravity

Along dipole beam

B‘=1.60 T/m

(a)

(b)

FIG. 2: Cross-sections of trapping potential with the o�set E0

subtracted, U(r) � E0, at several points during an adiabatic
expansion (B� = 1.60, 0.90, 0.45, and 0.306 T/m): (a) Along
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stant entropy, T � (B0)2/3, and weakening the trap will
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rate.
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tropy [14], an e�ect used to obtain a BEC of cesium from
a very cold, but dilute gas [8]. In our case, the e�ect is
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Figure 4.3.2: (a) Cross-section along gravity (axial direction of the quadrupole field) showing the
potential minima as the field gradient is reduced below support at the field zero. Atoms may then
fall into the hybrid trap and be removed from the zero point. (b) Cross section along the beam
propagation axis. While confinement becomes weaker the residual field from the quadrupole
potential remains creating an aspheric harmonic potential in which evaporative cooling may
occur. Images taken from [127]

.

make use of a hybrid trap, using both optical and magnetic fields, to best prevent these issues.

A hybrid trap consists of an optical dipole trap, suspended below the trap zero of a quadrupole

field. By using the increased phase-space density, of the microwave evaporated cloud cooled to

the point where Majorana losses become significant, atoms can be efficiently transferred into the

optical dipole trap. The transfer procedure requires the reduction of the magnetic field gradient

until it no longer compensates for gravity; atoms may then fall into the dipole beam potential,

Fig (4.3.2). The magnetic field remains on, at this lowered field gradient, such that an additional

confinement of the atomic ensemble exists in the weak direction of the dipole trap. The beam is

beneath the field zero such that Majorana losses are no longer present. Once atoms are loaded

into this trap, evaporative cooling is done by lowering the optical trap power and allowing high

energetic atoms to escape from the wings of the confining beam until a condensate is formed [127].

1064 nm Laser

The light for our optical dipole trap is supplied by a 20 W, 1064 nm, single-mode Keopsys

Ytterbium fibre laser, with a 5 MHz line width. The output is fitted with an isolator, for

protection against back reflections, and a collimator, providing a collimated 1/e2 = 2.6 mm

diameter beam. Being 1064 nm, the light is far red-detuned from resonance for both 87Rb

and 41K, forming an attractive, nearly conservative potential. After the fibre head the beam is

quickly reduced to a collimated 1.3 mm diameter beam before being split into three separate
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beams, Fig (4.3.3). A zero-order 1064 nm half wave plate and polarising beam cube is placed

directly after the fibre head to control the power.

Each beam passes through an AOM, and the diffracted order coupled into an optical fibre.

The acoustic-optic modulators (Goouch and Housego 3110-197 110 MHz), have an active aperture

of 1.25 mm diameter necessitating the reducing telescope. The AOMs are present in order to

have variable control over the power entering the fibre and to create frequency gap between the

beams. This is important to prevent optical interference between the beams. Currently, only the

ODT1 beam, derived from the first beam, is used on the experiment. We take the �1 order of

the AOM that diffracts with 85 % efficiency. The AOMs are controlled by a voltage controlled

oscillator ! mixer ! RF switch ! amplifier circuit. The RF switch enables acute toggling of

the light, while the mixer is used as a controllable attenuator into the amplifier to change the

diffraction efficiency of the AOM and thus power in to the ODT1 fibre. In particular, we make

use of this circuit element to intensity stabilise the output power of ODT1. This is crucial, as

optical dipole traps necessitate high powers, which actively drift as optical elements heat and

change efficiency/focus etc. Before being brought over to the main experimental chamber, with

the ODT1 fibre, the beam is passed through another telescope that expands the beam to 3.75 mm

diameter. Once again, due to the large powers delivered, it is good practice to use high mean

field diameter (MFD) fibres, here a Thorlabs 1064 nm, MFD= 7.7 µm PM fibre, to mode match

and distribute the energy as best as possible. Failure to do so may result in damage to the fibre

or reduction in coupling efficiency. This coupling has an efficiency of ' 80 % when well aligned.

Additionally, ODT2 is coupled to the main experimental region but not yet used on the

experiment. The fibre that brings this beam over, is an in-house connectorised fibre with a

double-clad core, (Nufern PLMAS-GDF-400).

Procedure and Performance

At the main experimental chamber the beam is focussed from the 3D-MOT chamber end to the

science cell chamber by a 300 mm lens, down to a waist of w0 = 70 µm, Fig (4.3.4). The focus

is offset below the quadrupole zero, by z0 = 100 µm. Further, it was found necessary to prevent

any back reflections, of the 1064 nm beam, from overlapping the incident beam. We initially

observed Raman transitions that depleted the hybrid trap and prevented achievement of BEC.

To load the trap, after microwave evaporation, the quadrupole field is ramped from B0
z

= 160 G

cm�1 to 29 G cm�1 over 3 s. As the magnetic field no longer supports against gravity, atoms

are able to move into the dipole trap. We have found that leaving the microwave radiation on,
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Figure 4.3.3: Schematic of the 1064 nm light apparatus. The light is split into three separate
beams, two optical dipole trapping beams (ODT1 & ODT2) and a third, which may be used as a
sheet beam. However currently this is not required and remains for future projects. ODT1 and
ODT2 are shifted 220 MHz from another in order to prevent interference effects when overlapped.

while ramping the magnetic field down, and bring it 2 MHz towards resonance the optical dipole

trap would load more efficiently. This microwave radiation is switched off after the magnetic

field decompression. The dipole beam delivers ' 2.8 W to the cloud location, at a trap depth

of 49 µK. The majority of this power is sent to a beam block at the back of the system while

one percent of the light is sampled by a photodetector sending this level to the intensity lock.

The signal from the photodetector is fed into a circuit which compares the light level to a user

defined level. If there is a discrepancy the circuit will alter the input into the mixer of the AOM

driving circuit. This will change the diffraction efficiency of the AOM until the signal levels are

equal. This circuit is stable, keeping fluctuations to < 1 %. A complete description of this PID

intensity stabilisation circuit is given in [178]. At the end of the transfer sequence 5 ! 10 ⇥ 106

atoms at 4(2) µK are transferred into the dipole trap.

4.4 Absorption imaging

The atomic ensemble, at each step in the sequence towards condensation, is directly observable

through absorption imaging. Our experiment is equipped with three imaging pathways, includ-

ing one high-resolution path in the vertical direction and two horizontal imaging beams in the

experimental plane. A schematic of these horizontal beams is shown in Fig (4.4.1). The primary

beam, through which all quantitative data in this thesis derives from, provides one-to-one imag-
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Figure 4.3.4: Laser schematic of the 1064 nm optical dipole trap producing a 70 µm waist beam
focussed below the centre of the atomic cloud.

ing while the second has 2⇥ magnification. Each beam is collimated to 25.4 mm diameter before

being passed through the cell. The primary beam is able to image at any point in the sequence

while the magnifying beam can only be used at the science cell location. Images are recorded by

a Prosilica GX1050C CCD.

Figure 4.4.1: Schematic of the two horizontal imaging beams currently implemented on the
system. Both are 4f relay systems, the first 1 : 1 and the second 2 : 1. Our primarily diagnostic
beam is Imaging beam I, used for all quantitative analysis.

This CCD is a 1024⇥1024 array with each element measuring 5.5⇥5.5 µm. This is the colour

version, consisting of a Bayer filter overlay on the CCD array, Fig. (4.4.2). This means that the

spectral response of a block of 2 ⇥ 2 neighbouring pixels is different. In particular, a quarter

of the pixels have a detection efficiency of less then 2 % at the imaging wavelength, 780 nm.
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Fortunately, from a single image three colour layers are returned forming the RGB image. When

a single layer is returned, pixels not overlaid with that spectral filter are interpolated and a more

accurate image obtained. Given this, we elected to analyse images collected with the green array,

as its sensors occupy 50 % of the array. This data is collected with 12 bit resolution, but noise

means data is only meaningful to an optical density of ⇡ 4.

Figure 4.4.2: (a) Bayer filter layout on the Prosilica GX1050C CCD. Green pixels occupy 50 %
of the real estate and therefore provide the best representation of an image taken with 780 nm
light as determined by the efficiency of the sensor elements (b). Images from [192]

Described in section 2.8 are the requirements for extracting the optical density from absorp-

tion images and how this can be used to extract meaningful data. In particular, three images

are required. These are an attenuated beam image, showing the shadow of the atom cloud, the

imaging beam in absence of the atoms, and a background, or dark, image. Unfortunately, this

process can introduce artefacts onto the optical density profile that reduce the accuracy of atom

counts. In particular mechanical vibrations can cause fringing that degrade image quality. To

minimise the effect of this, the time between the first two images must be as small as possible.

Here we are able to produce crisp images of the cloud by simultaneously reading out an im-

age taken by the Prosilica GX1050C while exposing it to the next image, with 100 µs between

exposures.

To do this effectively, the precise, and synchronised timing of all imaging light elements is

required, the timing diagram shown in Fig (4.4.3). Each image consists of a 50 ms exposure.

However, the imaging beams are only present for 100 µs of this. The first image taken is

that of the un-attenuated imaging beam. This is made possible by the fact that atoms, in the

magnetic trap, reside in the |1, �1i sub level which is dark to the imaging beam, locked on the
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Figure 4.4.3: Timing diagram for back-to-back imaging with the GigE camera.

|F = 2i ! |F 0 = 3i transition. As such an incident light level can be recorded. Once this beam

is extinguished, the repump is switched on for 50 µs, during which the CCD is not recording.

This pumps atoms in the |F = 2i manifold, making them resonant with the imaging beam.

Immediately afterwards this beam is extinguished and imaging light toggled for another 100 µs.

This beam is now attenuated by the atomic cloud and can be used to calculate the optical density.

A dark background image is taken with no light at the end of the second exposure for 50 ms.

The timing of this is not crucial as the dark ground noise light level is almost negligible, under

normal experimental circumstances. This is a key feature as to why this camera was chosen. Its

high frame rates and ability for strobe imaging is ideal for the experiment.

Once images have been acquired they may be processed to extract meaningful data. We

make use of MATLAB’s image acquisition toolbox to communicate with the Prosilica camera

and analyse the data. This is done at the end of each experimental run, and has the output

shown in Fig (4.4.4). Pseudo code for the image processing code is,

1. First, the two-dimensional optical density profile is computed from the background, atom

and dark images.

2. The centre of mass of the atomic cloud is found by creating a thresholded binary image

and applying a median filter to remove noise. The first moment is found and used as the

centre of the cloud. This step is only accurate for images with high to moderate SNR.
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3. A thermal profile, y = Aexp


(x�B)2

C

2

�
, is fit to an axial and radial slice which pass through

the centre.

4. The atom number is calculated based on the optical density of the cloud and all the data

is plotted, Fig (4.4.4).

4.5 High resolution imaging

State of the art in Bose-Einstein condensate experiments lays with the adaption and improve-

ments in data acquisition capabilities, combined with the naturally large parameter space afforded

by these systems. As discussed in Section 2.8 the adaptation of high-resolution absorption and

fluorescence imaging systems have enabled in-situ knowledge on atom number distributions with

high spatial resolution. In particular the parity measurements of the fluorescence scheme, Weit-

enberg et al [21], have shown single atom sensitivity with a resolution of ' 700 nm when detecting

rubidium atoms confined to a lattice. Similarly, the group of Markus Greiner constructed a solid

immersion lens system (NA = 0.8) for imaging with a resolution down to ' 600nm (FWHM) at

780 nm [19]

The difficulty with these designs is that they require specialised and custom optical equipment

to be constructed, which is often costly or prohibitive in other areas of there experiment (limiting

access or versatility). Here the vacuum apparatus design was influenced by the possibility of using

commercially available microscope objectives. In particular, the all-glass BEC vacuum cell has

a glass thickness equivalent to that of commercial liquid-crystal display technology. Being a

lively industry, off-the-shelf microscope objectives with glass correction capabilities are readily

available.

The science cell, a 12.5 ⇥ 46.25 ⇥ 22.5 mm Hellma analytics 101.150 QS cell, has an active

imaging region of 10⇥45⇥20 mm with 1.25 mm thick quartz glass walls. This is well suited for use

with our commercial microscope imaging objective, an Olympus LCPLN50xIR. This objective,

Fig. (4.5.1), has a working distance of ' 4.3 mm and a correction collar for aberrations, when

imaging through a glass substrate. This can correct for 1.2 mm of glass, a bit less than the cell wall

thickness, however the aberration should be negligible. A point to appreciate is that the atoms

are transferred to the science cell its central axis and moved ⇡ 100 µm down when transferred

to the dipole trap. As a result, the ensemble resides ⇡ 5 mm from the base of the science cell.

This is outside the working distance of the LCPLN50xIR. In order to move the atoms into view,
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Figure 4.4.4: Sample analysis window of the imaging software (left) showing the centre of the
cloud, as calculated by the thresholded centroid method, and the fits through the slices. (right)
The raw data and calculated optical density images.
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(a)$ (b)$ (c)$

Figure 4.5.1: (a) A image of Olympus LCPLN50xIR microscope objective to be used for high
resolution imaging on the apparatus, image from [195]. With an NA= 0.65 a resolution of 735 nm
is possible with 87Rb imaging light. The transmittance data through the objective is shown in
(b). (c) Illustrates where the imaging objective is to be placed. As the glass is 1.25 mm thick
and the working distance of the objective ' 4.3 mm, the objective must be placed as close as
possible to the cell as atoms will be trapped ' 3 mm above the cell wall.

the quadrupole trapping field must be moved before loading into the hybrid trap, which can be

achieved by reducing the current in the bottom coil. This vertical displacement of the atomic

gas has yet to be completed as the focus of the work taken out in this thesis was to produce a

condensate and not concerned with the high resolution imaging system. Additionally, a 0.4 NA,

LCPLN-IR Series 20X is available. While having a reduced spatial resolution, it has a working

distance of 8.3 mm and glass correction of 1.2 mm. This larger working distance means that it

is not necessary to move the cloud for imaging.

The LCPLN-IR Series 20X objective has recently been placed onto the experiment, placed

⇡ 3 mm from the bottom of the cell, Fig (4.5.2), by a custom designed hold. In order to precisely

control and align the objectives this holder is mounted to a 3 axis close-loop NanoMax piezo

stage. With the strain gauges displacement control down to 5 nm is available, with a travel of

20 µm.

The other elements of the high-resolution imaging system are the zoom lens and the CCD,

arranged schematically in Fig (4.5.2) (Right). Once the imaging light is brought in from the top

of the science cell, and the atoms interact, it is collected by the objective lens. This light is imaged

with 20x magnification to the zoom lens which may be adjusted to whatever magnification is

require before being image by the CCD. This CCD camera is a Princeton Instruments Pixis

1024 CCD. This device houses a 1024 ⇥ 1024 CCD with an optimised quantum efficiency in

the UV and NIR range and zero etaloning. Each pixel is 13 ⇥ 13 µm. As a result the CCD
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Figure 4.5.2: (Left) Image of the imaging objective mounted on the apparatus. The fine position
of is controlled via a 3-axis piezo stage down to 5 nm. (Right) A schematic of the full high
resolution imaging system.

images a ⇡ 270 ⇥ 270 µm region at the trapping plane. While the microscope objective has

not been implemented for imaging the atomic cloud, various side projects, mostly undertaken

by Isaac Lenton, relating to the mechanical design and software control for doing so has been

done in parallel to attaining a condensate. Upon completion of this thesis the objective had been

mounted to the experiment and roughly aligned to the science cell. Preliminary testing of the

imaging systems performance, and software interface, has it almost ready for use in imaging the

cloud.

Initially this axis will perform absorption imaging in the same way as the horizontal imaging

beams. However, in the future there is the intention to utilise dark-ground imaging techniques,

new to Bose-Einstein condensates, to image condensates to very low atom numbers. Recently,

numbers as low as 7 have been resolved [179], as well as in-situ imaging [180] using the dark-

ground technique. By inserting a mask in front of a collecting lens only light scattering by atoms

is collected and any background light does not reach the detector.
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Figure 4.6.1: Evolution of the atomic profile as the ensemble moves across the BEC transition.
It begins as a thermal cloud until the emergence of a peak arises and the condensate fraction
increases as the optical power is reduced further.

4.6 Optical evaporation and condensation of 87Rb

After atoms have been trapped in the 3D-MOT, put into a magnetic trap, transferred to the

science cell, undergone microwave evaporation and loaded into the hybrid trap, they are ready to

undergo a second evaporative cooling process to produce a BEC. However despite achieving an

efficient and suitable loading of the hybrid trap, it was several weeks before a 87Rb condensate

was observed. Several systematic issues prevented it and had to be tracked down in order

for proper operation of the system. Ground loops were present with the coil control circuits

placing noise onto the magnetic quadrupole field and dipole beam stabilisation circuit. The NEG

element of the ion pump on the 3D-MOT chamber side showed signs of saturation, and therefore

decreased pumping speed. Further a persistent leak was present that may have interfered with

the experiment. The main obstacle, however, was from back reflections of the 1064 nm dipole

beam inducing presumed Raman transitions in the cloud that depleted the trap. By slightly

angling this beam, such that the back reflection no longer overlapped the cloud of 87Rb, the

lifetime in the hybrid trap rose dramatically, from ⌧ = 15 s to ' 40 s, allowing time to perform

optical evaporation ramps without competing against the atomic losses.

Optical evaporation of the cloud is performed by ramping down the power in the 1064 nm

dipole beam exponentially via input to the intensity stabilisation circuit. In particular we reduce

the 2.8 W of the dipole trap to some arbitrarily low value (' 600 ! 800 mW) over 12 s until

the characteristic bimodal distribution of a BEC is observed, Fig(4.6.1). By lowering the power
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further an almost pure condensate of ⇡ 1.5 ⇥ 105 87Rb atoms is produced, with a lifetime of

⌧ ' 5 seconds, Fig (4.6.2).
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Figure 4.6.2: Experimental decay of atom number in the degenerate 87Rb cloud. The lifetime of
5 seconds is sufficient but may indicate vacuum limited problems that restrict it from being up
to several minutes long.

This represents the culmination of work up to the final month in the laboratory. In the

short time remaining condensates were routinely, but not reliably, produced on a day-to-day

basis. In particular it was found that BECs could be produced in the morning but would have

poor reproducibility and reliability in the afternoon. This precluded extensive optimisation and

investigations of the BEC but did aid in further improvements and decisions on the experiment.

In particular it demonstrated the extent to which saturation of the NEG element, and subsequent

vacuum limited losses, was detrimental and aided in discovering a small vacuum leak. Since my

time in the laboratory, this information was used to make the decision to open the vacuum

system to atmosphere and add a new ion pump to the 3D-MOT side and remove leaks.
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4.7 Sequence Summary
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Figure 4.7.1: Production of a degenerate 87Rb gas consisting of N = 1.5 ⇥ 105 atoms from step
(I) to (III). (I) Microwave evaporation of the compressed cloud in the quadrupole trap at the
science cell (II) loading into the dipole trap and (III) optical evaporation in the dipole trap.
Atom number N (open squares) and temperature T (solid triangles) versus BEC pathway time.

Fig (4.7.1) and Table (4.2) shows an overview of a typical experimental sequence for producing

a condensed cloud of 87Rb in the hybrid trap. The experimental sequence for producing 87Rb

condensates is as follow. First 2 ! 4⇥109 atoms are loaded into the 3D-MOT, fed by an atomic

beam from the 2D-MOT. 50 ! 60 % of these are loaded into a purely magnetic quadrupole

trap with an axial gradient of B0
z

= 100 G cm�1. This ensemble is then transferred, from the

3D-MOT chamber, to the science cell by a magnetic hand-off procedure. Here, ' 1 ⇥ 109 atoms,

at 100 µK are evaporated, by microwaves, after the quadrupole field gradient is increased to

B0
z

= 160 G cm�1. This is done until Majorana spin-flips become significant, typically leaving

50 ⇥ 106 atoms at 20 µK remaining. As the far red-detuned, and thus conservative, optical

dipole trapping beam (1064 nm) is switched on, the gradient of the magnetic fields is lowered,

just below that which supports atoms against gravity, allowing atoms to fall into the laser fields

attractive potential. As a result 3 ! 10 ⇥ 106 atoms remain before a 12 s optical evaporation

ramp produces a pure 87Rb condensate of 1.5 ⇥ 105 atoms. A plot showing the atomic number

and temperature during the entire BEC procedure is given in Fig (4.7.1).
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# Stage Duration NRb T
1. MOT 10 s 3.0 ! 5.0 ⇥ 109 ' 100 µK
2. CMOT 50 ms ' 2.0 ! 3.0 ⇥ 109 -
3. Depump 3 ms ' 2.0 ! 3.0 ⇥ 109 -
4. Magnetic trap I 10 ms 1.0 ⇥ 109 100 µK
5. Magnetic transfer 800 ms 1.0 ⇥ 109 100 µK
6. Magnetic trap II 10 ms 1.0 ⇥ 109 150 µK
7. Microwave Evaporation 5 s 5.0 ⇥ 107 20 µK
8. Hybrid trap load 3 s ' 5.0 ⇥ 106 5 µK
9. Optical evaporation 12 s ' 1.5 ⇥ 105 Condensate

Table 4.2: Summary of the main experimental steps in producing an 87Rb condensate. This is
shows the number of trapped atoms and the duration of each step.
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Chapter 5

Outlook and Summary

The design, construction and testing of the apparatus, the supporting infrastructure and op-

eration represents the main contributions of the author to the dual-species apparatus at UQ.

This culminated with the observation, and preliminary characterisation of a 87Rb condensate

consisting of ⇡ 1.5 ⇥ 105 atoms. However the scope of the experiment is to make use of the

large optical, and close physical, access of the system for high resolution imaging in order to

study non-equilibrium dynamics in a closed, interacting quantum system. Of particular interest,

once a dual species condensate is available, is the study of universality of single-species domain

formation following a system quench across the miscible to immiscible phase transition. Further,

we wish to do so inside a flattened, homogenous box trap. In order to do so, the short-term goals

of the experiment are:

1. Creation and optimisation of the 87Rb and 41K condensate.

2. Implementation of (dynamically) two-dimensional trapping infrastructure in order to have

a spatially homogenous atomic mixture.

3. Implement the high resolution imaging optics in order to study domain formation when

quenched across the miscible-immiscible phase transition.

4. The data should demonstrate some universality in its dynamics, well explained in [75].

Work towards these goals has been ongoing, in tandem, with the work presented in this

thesis by the various members of the research group. Here a brief summary of their progress is

presented.

121
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FIG. 1. (a-d) Snapshot of the time evolution of a system on a 1024 square lattice at times t̂ = 300, 1000, 2000, and 5000.
Domains of positive (negative) magnetization are shown in black (white). After the system is quenched across the instability,
domains begin to form which then undergo a self-similar coarsening evolution that is governed by universal scaling laws. (e)
Average quadratic magnetization �m2� as a function of time. The magnetization of each domain grows with time.
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where m
i

is the particle mass, µ
i

the chemical poten-
tial, g

ii

is the interaction between like particles of type
i, and g12 describes the scattering of atoms of spin 1
and 2. In the absence of long-range dipolar interactions
[12], the interaction Hamiltonian does not contain spin-
flip terms and conserves the total density of each species.
Note that the GP equation is strictly applicable only
at zero temperature and does not account for quantum
fluctuations. More complex models describing the time-
evolution of the superfluid mixture, such as the “Model
F” in the Hohenberg-Halperin classification [6], reduce
to the GP equation in the low-temperature limit [28].
Here, we model the GP equation directly and discuss the
limitations of our approach later.

In typical spinor BECs such as the hyperfine states of
87Rb or 23Na, the scattering length is nearly identical in
all channels [31], and we choose g11 = g22 = g > 0 in
the following. If the intra-species interaction dominates,
g12 <

p
g11g22, the two condensates can coexist. How-

ever, if g12 >
p

g11g22, the ground state is no longer ho-
mogeneous and the system phase-separates [11, 32–34].
We investigate how the system evolves when suddenly
quenched from the miscible phase with g12 < g to the im-
miscible phase with g12 > g. Experimentally, this can be
done either using a Feshbach resonance in systems such
as 85Rb-87Rb mixtures [35], or by preparing a miscible
initial state in an otherwise immisicible mixture (such
as the hyperfine states of 87Rb or 23Na [1, 11]) using a
transverse magnetic field and observing the subsequent
dynamics [14]. We do not expect that our conclusions
will be modified if g11 �= g22, as the precise mechanism
for coarsening does not depend on the specific choice of
interaction parameters.

We consider the time-evolution of the polarization
m(r) = (n1(r)�n2(r))/(n1(r)+n2(r)) as an order param-
eter. The spin texture of a spinor gas, and thus the mag-
netization, can be measured directly using spin-sensitive
phase contrast imaging [13, 14]. At early times, domains
of opposite spin form due to a spin-wave instability [24].
Taking into account only the most unstable mode, the
initial domain size is of order L0 ⇡ �

s

, where we de-
fine the spin healing length �

s

=
p

1/2mn(g12 � g), and
n = | 1|2 + | 2|2 is the total density. When the domain
size becomes much larger than the spin healing length,
the dynamics are universal. Expressed in units of the
characteristic length scale L(t), all correlation functions
of the order parameter m have no explicit time depen-
dence, and collapse to a single, universal scaling function.
The pair correlation function, which describes the corre-
lation of the magnetization at two points separated by a
distance r, can be written as follows:

g(r, t) =
1

V

Z
d2R hm(R)m(R + r)i = f(rL�1(t)). (2)

The bracket h. . .i denotes an ensemble-average. The cor-
relation function is normalized such that g(0, t) = 1. Sim-
ilarly, the static structure factor assumes the scaling form

S(q) =

Z
d2r eiq·rg(r, t) = L2f̂(qL(t)). (3)

It should be emphasized that the scaling is a conjecture
which must be proven on a case-to-case basis [5].

The equations of motion corresponding to the Hamil-
tonian (1) are the well-known GP equations:
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where i, j = {1, 2} and j �= i. In the following, we con-
sider two species of equal mass m

i

= m and equal chemi-
cal potential µ

i

= µ. We simulate the time evolution (4)
on a square lattice of dimension l = 1024 and spac-
ing d using a split-step spectral method as introduced

Figure 5.0.1: Numerical simulation of the time evolution of a binary Bose condensate following
a quench from the miscible to immiscible phase transition for various times t̂, taken from [75].
Domains of positive (negative) magnetisation are shown in black (white). The sizes of these
domains are anticipated to show self-similar coarsening evolution with a universal scaling law.
(e) Shows how the average magnetisation (species domain) scales over time.

5.1 Towards a Flat Trap

As mentioned, we wish to study our system in a flattened pancake-esque trapping potential such

that the motional dynamics in one direction are suppressed. In particular we wish to restrict the

movement along the direction of gravity. Given highly anisotropic traps are regularly engineered

to reach the quasi-2D and 1D regime, a flat trap is readily available to experiments. In general,

this is achieved by increasing the trapping frequency along one direction until the condensate

radius approaches the healing length associated with interatomic interactions. This may not

always be sufficient, however, as atoms may literally squeeze into this third dimension if the

density is too great [181]. In practice we only require the superfluid dynamics to be generally

two-dimensional. In this regard we seek to produce a condensate which is fully 3D, but with

tight confinement in one direction.

Experimentally we wish to suppress the axial direction, along gravity, by placing atoms in the

nodal plane of a Hermite-Gaussian TEM01 mode. To produce this light field, the output from

a 532 nm Coherent Verdi laser will be passed through a phase plate. After focussing through a

cylindrical lens the beam will emerge as an approximate TEM01 mode that can suppress motion

in the vertical direction. An optical schematic is presented in Fig (5.1.1).

An incident Gaussian beam, after passing through the phase plate and shaping optics, arrives

at the image plane (the atom location) with an intensity pattern given by [182],
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where P is the power in the beam, w
z

and w
x

are the beam waists in the axial (confining) and
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Figure 5.1.1: (a) Proposed schematic for producing the TEM01 mode (b) in order to have a
system with reduced dimensionality. The beam is shaped before being passed through a phase
plate until it passes through a cylindrical lens to and collimated onto the cloud position.

transverse directions. Subsequently, the trapping frequency seen from atoms with mass m along

the axial direction is then given by:
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. (5.1.2)

Here !0 is the frequency of the light, and � the detuning from the appropriate D2 transition

line. Several methods exist by which this trapping frequency can be increased, such as bringing

the light close to resonance or increasing the power in the beam. The former is not feasible as

having a near-resonant beam results in non-negligible scattering rates, which will deplete the

number of trapped atoms. However, if the power is sufficiently high, then the trapping frequency

is increased and the axial dynamics suppressed. Here we use a blue-detuned beam, where atoms

will reside in the nodal plane. In this configuration, the confinement area is less affected by

spurious intensity gradients or small length scale speckle on the intensity profile.

As the TEM01 has a nodal plane, if atoms are loaded into the trap they are free to diffuse

along the unconfined directions. As a result the ends of the nodal plane must be blocked such

that atoms are trapped. This is to be done by projecting a pattern, along the axial (gravity’s)

direction from a spatial light modulator (SLM) to create a hard-walled potential. This is done

through a SLM of the digital-micromirror device (DMD) variety.

5.2 Digital Micro-mirror Device

The digital micro-mirror device is an array of small and individually addressable micro-mirrors,

capable of generating configurable binary potentials. These commercial products are often used

in digital display devices such as projectors and holographic visualisation systems [183]. Re-

cently, DMDs have emerged as a useful tool in academic and technical fields for aberration
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corrections [183, 184, 185] and optical tweezing. In ultra-cold atom experiments, given the high

level of control, down to a single pixel elements, they may be used in conjunction with optical

lattices to readily control atom distributions [21, 22]. The use of DMDs for generating the trap-

ping potential itself has also begun to gain traction [186, 187]. We intend to use a DMD on our

experiment in this way. In particular we intend to use the DMD as a binary amplitude SLM

that will be projected, vertically, onto the atomic cloud to engineer arbitrary potentials while

also confining the cloud to the nodal plane of the TEM01 sheet beam. The majority of this work

has been carried out by the ever-enthusiastic Isaac Lenton.

5.2.1 Background Information

A DMD consist of two key elements, the micro-mirror array itself and the controller board,

which interfaces, powers, and signals the pixel elements. On the DMD, several hundred thousand

microscopic mirrors are arranged in a rectangular array. These mirrors are tiltable, to ±12 �, to

an on or off state. The on state is a reflection in the intended propagation direction, which the

off state is a reflection away. Tilt is provided by a yoke and hinge element that connects to a

CMOS element that ‘memorises’ the mirror state, thereby latching it on or off as programmed,

Fig. (5.2.1). The mirror array sits atop a random access memory cell array, which facilitates the

communication between the controller board and mirror state. When correctly operated, the

DMD may be used as a spatial light modulator, however several considerations are important in

doing so.

The DMD may be used in two configurations. When placed at the Fourier plane in an

imaging system, phase and amplitude control is afforded to the user. This is has shown to be

a very powerful technique in creating a variety of patterned optical fields, with complex phase

structures [188]. However such a method has low power efficiency in terms of power remaining

at the imaging plane due to low diffraction efficiency. If phase control is sacrificed, an increase in

efficiency is gained when the DMD is placed at an object plane. This provides binary amplitude

modulation of an incident beam, with good transfer efficiency, when phase modulation is not

required. This is the method that is to be employed on the experimental set up.

5.2.2 DMD Imaging Considerations

A key consideration in using DMDs as amplitude masks is that they are binary SLMs. This is

a direct consequence of the micro-mirror operation, being either off or on. Given this devices
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FIG. 1. Schematic view of DMD structure (left) and colourised electron microscope image from

where a DMD pixel has been removed (right) [9].

A. Optical e�ciency

It is possible to estimate the energy e�ciency using estimates for array fill factor, mi-

cromirror reflectivity, window transmittance and di�raction e�ciency [8]. For TI’s current

portfolio of DMD products, the array fill factor is quoted as 92% and the micromirror

reflectivity 88% [11]. Although the micromirror reflectivity is wavelength dependent, the

reflectivity profile of aluminium is relatively flat, a more accurate value can be found by

consulting [12]. The window transmittance and di�raction e�ciency need further consider-

ation.

Window transmittance

TI provides DMDs with windows coated for three transmission regions: Ultraviolet (UV)

(320 nm to 400 nm), Visible (Vis) (400 nm to 700 nm) and Near Infrared (NIR) (700 nm to

2500 nm) [8]. The windows have a anti-reflective coating on both the top and bottom glass

surfaces [8]. Figure 2 shows the measured e�ciency for a typical single-pass transmittance

through both the top and bottom window surfaces [8].

The DMD window protects the micromirrors from dust and other hazards and also main-

tains a special environment for normal DMD operation [13]. Attempts at removing the

DMD window have been reported however these have either resulted in damage to the mi-

3

Figure 5.2.1: (Left) Schematic of a single mirror element of a DMD array. The mirror connects
to the yoke and hinge which enables of tilt ±12� which constitutes the on or off state of
each element, image from [193]. CMOS memory enables latching capability. (Right) Coloured
electron microscope image of a small section of a DMD array, image from [194]. A mirror has
been removed showing the yoke and hinge assembly below.

are popular elements for projective devices, they are able to cycle through patterns at a rate

faster than perceptible by the human eye, which means mirror can be switch on or off at a

rapid rate. This is the basis of grayscale imaging with binary amplitude SLMs. The DMD

used here has a 22 kHz switching capability. When run with 3-bit grayscale depth capability the

‘average’ resolution, per 3-bit image, is 2.75 kHz. Given atoms are normally confined to potentials

with trapping frequencies of this order, the atoms may not ‘see’ the discrete amplitude changes

but rather experience the average of many frames. As such intricate knowledge of the data

transfer process is important to determine the frame rate as the atoms will experience. Another

consideration, is that, for trapping purposes it is important to consider how the amplitude mask

will translate to the trapping plane of the atoms. The size of the DMD array, consisting of

thousands of micro-mirrors, is a 10.8 µm square. The size of a BEC in a cross dipole trap,

however, is typically on the order of a few µm. Therefore any trapping potential generated by

the DMD must be minified at the trapping plane in order to be useful, just as a dipole beam is

focussed for the dipole trap. This imaging system therefore projects the image formed by the

DMD into the trapping plane of the atoms. If the resolution of this projecting system is higher

than the mirror spacing, then the DMD is perfectly mapped to the trapping plane and the binary

pattern is perfectly imaged. This means only binary patterns are available to the user. Thus any

grayscale imaging would require the cycling of the DMD pattern, which may not be desirable.

Another method for creating smooth varying intensity images is having a finite resolution system
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that cannot resolve single mirrors. As a result, any single resolution element of the imaged DMD

would consist of several contributing elements defined by the point-spread function, Fig (5.2.2)

(right). Thus the power incident on the image plane is averaged over several mirrors, making

gradients in intensity possible. This is the method to be employed in our laboratory.
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5.2.3 DMD and the Imaging System

Based on these considerations the most effective DMD was one which maximised frame rate and

had high array resolution and decent diffraction efficiency. This search resulted in purchasing a

Visitech Luxbeam 4600 DLP controller board with a WUXGA 2xLVDS DMD array, Fig (5.2.2)

(left). This array consists of 1920 ⇥ 1200 pixels with maximum update frequency of 20.5 kHz.

Each micro-mirror measures 10.8 ⇥ 10.8 µm with the on-board memory allowing storage of up

to ' 15000 DMD patterns. This latter capability is useful when trying to utilise the maximum

frame rate of the DMD device for slowly time-varying potentials.

DMD#532#nm##

Science#Cell#

Ver1cal#la3ce#for#2D6
confinement#

1064#nm#sheet#
confining#beams#

DMD#Objec1ve#
0.45#NA#

#
Binary#DMD#paJern#

Convolu1on#

Imaging#
System#PSF#

Smoothed#poten1al#

(a)#

(b)#

(c)#

(I)# (II)#

Figure 5.2.2: (Left) Visitech Luxbeam 4600 DLP controller and WUXGA DMD array, image
from [196]. This DMD has 1920 ⇥ 1200 pixels for use on our system. The DMD is physically
separable from the board however adequate heat sinking is important. (Right) Illustration of
how a binary pattern from a DMD may be convolved with the finite point spread function to
produce a smoothened potential.

The first use of the DMD will be to create a confining potential in combination with the sheet

beam. This is to be done by using blue-detuned light, which caps the nodal plane of the sheet such

that atoms reside in the intensity minima in the middle. Ideally we wish to create a homogenous

trap but this is complicated by the harmonic intensity profile of the sheet-producing beam where

intensity correction is not readily available. The DMD is used as a binary amplitude SLM with

the beam project orthogonally to that of the sheet beam. In practice it is implemented to be

imaged vertically through the aperture in the Macor coil hold above the science cell, Fig (5.2.3).



128 CHAPTER 5. OUTLOOK AND SUMMARY

Collimated 532 nm light is projected on the DMD, which acts as an amplitude mask in the image

plane. A 4f imaging system, consisting of a 500 mm lens and microscope objective, may then

minify the pattern to the imaging plane. The microscope objective is a Nikon L Plan 20X/0.45

resulting in a total minification of 50X, at the final imaging (or trapping) plane. Each resolution

element consists of 6 ⇥ 6 micro-mirrors.

Figure 5.2.3: Left - Schematic of the DMD device projecting a box trap into the trapping plane
to cap off the sheet beam and create a homogenous trap. The total magnification and finite
resolution of the system means that smooth potentials may be generated as multiple mirrors
contribute to a single resolution element in the trapping plane. Right - A photo of the DMD
mounted with mirror displaying the EQUS logo.

Physically these elements have been implemented onto the system, an image of the DMD

shown in Fig (5.2.3) (right). This required careful and precise alignment due to short working

distances and depth of field of the microscope objectives. Shown in Fig (5.2.4) is experimental

data that demonstrates the performance of the DMD and high-resolution imaging system. A

square lattice, with 1.3 µm spacing between sites, has been imaged. The performance is promis-

ing and illustrates the ability to create potentials that have a varying intensity profile, not limited

by the binary mode of operation. The ability to produce this spacing is also beneficial as neigh-

bouring lattice sites are close enough spaced that significant tunnelling is expected for 87Rb and
41K. A test ‘box’ potential has also been created which may be used for studies on coarsening

dynamics. A stirring beam, which may be moved at the DMD frequency, can be used to create

a turbulent initial state as well. These are patterns are well resolvable by the vertical imaging

system that shows a resolution of ' 650 nm full-width half maximum at 532 nm.

The initial testing of DMD has shown great promise and is a testament to the work carried

out by the occupants of the lab. In complicated patterns, optimal half-toning, the process by
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Figure 5.2.4: Images of patterns generated by the DMD array and imaging system. A square
lattice with ' 1.3 µm lattice spacing (a), a circular box with stirring beam to study turbulent
flow (b) and single ‘on’ mirror characterising the resolution of the system (' 650 nm at 532 nm)

which finite resolution is used to create the varying intensity patterns, is an iterative optimisation

problem. This may be done in-situ by reimaging the trapping potential and feeding this back

to an iterative optimisation algorithm that attempts to match the output image to the target

function, aiming for a RMS less than 1%. This has involved the constant investigation and

testing of a variety of algorithms including binarization and random dither methods [189].

5.3 Conclusion

It is hoped that this thesis provides the relevant and useful information regarding the design,

construction, performance, status, and progress of the dual species 87Rb and 41K Bose-Einstein

condensate apparatus. During design and construction, we endeavoured to build a versatile

and robust experiment that offered a great range of flexibility for future opportunities, without

compromising on performance. Aspects of the flexibility include close physical and high optical

access about the science chamber and implementation of magnetic and optical trapping poten-

tials. Additionally, the presence of potassium sources and capability of changing the wavelength

of the potassium laser could enable switching to a Fermi-Bose or different Bose-Bose mixture if

desired. It is also hoped that this thesis aids future students entering the laboratory to reduce

the learning time required to use the apparatus.

Over the course of my postgraduate time within the laboratory the vacuum, laser and mag-

netic field systems were designed, erected and tested. These were then used to produce dual
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species 3D MOTs of 87Rb and 41K. The magnetic trapping and transfer chain, consisting of a

novel coil and cooling design were similarly designed, constructed and tested. This was able to

transfer 50 ! 60% (1 ⇥ 109 atoms) of MOT-cooled rubidium atoms, with negligible atom losses

or heating of the sample. These atoms were then subjected to microwave evaporation to create

a much cooler, and dense, atomic cloud that was well matched to load into a 1064 nm dipole

trap. Loading of the dipole trap, to form the hybrid trap, resulted in 5.0 ⇥ 107 atoms, which

can be optically evaporated to produce a Bose-Einstein condensate. In the waning months of

my laboratory time, a 87Rb condensate of ⇡ 1.5 ⇥ 105 atoms was observed, with much delight,

representing the culmination of the work undertaken for this thesis.

A great deal of work lies ahead, before first experiments into non-equilibrium dynamics begin,

but the performance shown by the DMD and the high-resolution imaging system demonstrate

that the apparatus is more than capable. Several unknowns exist and need to be explored

before this becomes reality, however. First 41K must be incorporated and optimised alongside

the established 87Rb condensate. Alignment, loading and optimisation of atoms into a trap

configured by the DMD also needs to be carried out. Lastly, depending on this transfer step

additional evaporative cooling may be required in the box if loading the trap is not efficient.

This previously unexplored territory has recently been studied [190, 191].

All in all, this experiment promises to add to the field of degenerate quantum gases as it

combines the rich topology of condensate mixtures and the high resolution imaging capabilities

of state of the art experiments with the flexibility of digital micro-mirror derived potentials.
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Artificial gauge potentials for neutral atoms. Reviews of Modern Physics, 83(4):1523, 2011.

[29] BT Seaman, M Krämer, DZ Anderson, and MJ Holland. Atomtronics: Ultracold-atom
analogs of electronic devices. Physical Review A, 75(2):023615, 2007.



BIBLIOGRAPHY 133
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