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Abstract

The recent development of configurable optical trapping techniques for dilute atomic Bose-

Einstein condensates, a macroscopically occupied quantum state and hence a superfluid,

allow highly controllable experiments. The UQ BEC lab is capable of creating highly oblate

BECs, ideal for experiments on two dimensional vortex dynamics. In this thesis, we present

two experimental studies of the dynamics of these point vortices. In 1949 Lars Onsager

predicated that point vortices in a bounded fluid must cluster at high energies, at a negative

thermodynamic temperature. This was a very influential theory, explaining the stability of

large two dimensional vortices, such as the Great Red Spot on Jupiter. The first section of

this thesis investigates a system of same-signed vortices, known as the chiral system. This is

predicted to have on-axis vortex equilibrium states at low energy, with a symmetry breaking

transition to o↵-axis vortex clusters at high energies. We present the first observations of

these equilibrium states, as well as the relaxation of a non-equilibrium state into an o↵-

axis cluster. The data is very well described by our numerical calculations. These results

answer some previously open theoretical questions such the relaxation time of vortices into

equilibrium. The second experiment involves the dynamics of bound vortex-antivortex pairs,

known as dipoles, the two dimensional equivalent of a smoke ring. As the dipoles carry linear

momentum and energy, they obey a relation similar to Snell’s law in optics. Preliminary

data shows qualitative agreement between the trajectories of the dipoles and simulations.

Overall these results demonstrate the versatility of the apparatus, for investigating vortex

dynamics, suggesting several future areas of experimental interest.
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1
Introduction

Since the first Bose-Einstein condensate (BEC) was created in 1995 [4], a wide range of new

experimental possibilities have opened. These have allowed physicists to explore many of

the remarkable and strange properties of quantum mechanics, on a macroscopic scale. There

are now around 250 experimental and theory groups investigating the area of cold atoms,

BECs and degenerate fermi gases (DFG), on every continent except from Antarctica, and

even in low earth orbit aboard the ISS, a remarkable multinational achievement. Optical

and magnetic manipulation o↵ers an extremely high degree of control over dilute atomic

BECs, allowing experiments on superfluid dynamics and particularly experimental research

in quantum turbulence. The UQ BEC apparatus is ideal for experiments in two dimensional

superfluid dynamics, due to its high resolution and almost arbitrary dynamic potentials, cre-

ated with a digital micromirror device (DMD). The first area of investigation in this thesis

1



2 Introduction

Figure 1.1: Examples of coherent structures across many length scales in two dimensional
turbulence. Top left, a vortex in a soap bubble [1]; Top right, cyclone Oma [2]; Bottom left, jets
and giant vortices in Jupiter’s atmosphere [3]; and an Onsager cluster observed at the UQ BEC
lab.

concerns quantum turbulence. While many aspects of quantum turbulence are well under-

stood theoretically, there are presently many open questions that must be addressed with

experiments. The first area of this thesis investigates a system of same-signed vortices, or

the chiral system. We present the first observation of the long-predicted Onsager clustering

in the chiral system, as well as observing non-axisymmetric vortex equilibrium states that

are characterised at a negative absolute Boltzmann temperature. The second half of this

thesis investigated the dynamics of a vortex-antivortex pairs, dipoles, and their motion in

an inhomogeneous condensate. The dipoles can be shown to obey a Snell’s law relation,

as dipoles carry linear momentum and energy, and have curved trajectories, analogous to

photons in a fibre optic cable.
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Turbulence is one of the least understood areas of classical physics. This is because it

occurs in continuous mediums with many, often infinite, degrees of freedom, leading to an

interplay of order and disorder over many length scales. This leads to mathematical complex-

ity which, despite hundreds of years of scientific inquiry, is still poorly understood. Despite

some encouraging analytical results, such as Kolmorogov’s celebrated energy spectrum [5],

no theory has been able to describe how turbulence arises purely from the properties of the

Navier-Stokes equations. Some of turbulences widely accepted upon properties include being:

spatially and temporally irregular, non-local, non-Gaussian, non-integrable, and chaotic [6–

11]. Simpler models of fluids, such as inviscid two dimensional fluids, are quite elucidating

mathematically and yield a rich phenomenology [11, 12]. Two-dimensional turbulence fea-

tures coherent rotational structures on scales ranging from soap bubbles, oceanic atmospheric

phenomena on the planetary scale, and recently, at micrometer scales in BECs [13, 14]; dis-

played in Fig. 1.1. Somewhat unexpectedly quantum turbulence, turbulence arising from

superfluids, is less mathematically complex than classical turbulence. Whilst an interesting

area of research in its own right, it may provide insight into classical turbulence.

Perhaps the simplest model of a turbulent fluid is the point vortex model originally de-

veloped by Helmholtz [15] in 1858. Helmholtz showed that the vorticity of a single particle

is conserved in two dimensions. By analogy to electrostatics or gravitating systems, the

vorticity of the flow can be generated purely by N point sources (vortices) described by 2N

coupled first order ODEs. This type of system displays rich mathematical behaviour which

allows exploration of the transition to chaos, the deep connections between vortex equilib-

rium positions and roots of complex polynomials, applications of projective geometry, and

the Weierstrass ⇣ function [16]. Physically, the point vortex model is an example of a system

with long range interactions; other examples include astrophysical self gravitating systems,

e↵ective plasma models, spin systems and “toy models” [17, 18]. While the statistical me-

chanics of systems with long range interactions is still controversial, given that the partition

function is no longer factorisable, these systems display rich and unexpected behaviour, such

as having negative heat capacities in the micro-canonical formalism [17].
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Figure 1.2: The parameter space of the same-signed vortex, chiral system, originally investi-
gated by Smith and O’Neil [19]. The equilibrium configurations of vortices are completely charac-
terised by the vortex energy and angular momentum. Region 1 on-axis vortex clusters equilibria.
Region 2 vortex ring equilibria. Region 3 o↵-axis vortex cluster equilibria. Region 4 is a forbidden
region due to constraints of the energy and angular momentum. The blue inset is the region of
parameter space explored in this thesis. At high energies the equilibria transition from on-axis to
o↵-axis due to competition between energy and angular momentum. This transition can only occur
at a negative thermodynamic temperature.

Using the point vortex model, the scientific giant Lars Onsager, found a qualitative expla-

nation for the large scale coherent flows found consistently in two dimensional fluids [12, 20]

see FIG. 1.1. Similar statistical mechanical techniques have since been applied to model

atmospheric phenomena [21], oceanic flows [22], Jupiter’s Great Red Spot [23, 24] ,as well

as the structure of stellar systems and galaxies [25, 26], amongst many others.
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While vortices in a classical fluid can form and dissipate over time, vortices in a super-

fluid are quantised with circulation ±h/m, where h is Planck’s constant and m is the atomic

mass. When in a su�ciently homogeneous condensate, these vortices exhibit an almost exact

realisation of the point vortex model [12, 27, 28]. While Onsager’s theory of clustering has

been widely influential, only recent experiments with Bose-Einstein Condensates (BECs)

have allowed realistic point vortex systems to be created. Onsager clustering of vortices in

systems consisting of roughly even numbers of vortices and anti-vortices, has been recently

observed by the UQ BEC lab [13], and by a group at Monash [14]. However, the chiral

system has not been investigated experimentally, despite the system being well modelled

with a variety of theoretical techniques by Smith and O’Neil in 1990 [19]. In this system,

competition between vortex energy and angular momentum creates a transition between

on-axis equilibrium vortex distributions at low energies, to o↵-axis equilibrium distributions

at high energies, at a specified angular momentum. This resembles a second order phase

transition, and can only occur at a negative thermodynamic temperature.

Experimentally, we have made the first observations of the chiral vortex clustering. Ini-

tial vortex states were deterministically created by sweeping optical blue-detuned paddles

through the condensate, and modelled using the Gross-Pitaevskii equation, which gives a

good description of the condensate for our experimental regime. The simulations were found

to qualitatively agree with the experiment, giving us confidence that all the vortices are same-

signed. We find excellent agreement between the vortex positions from the experiment and

a dynamic point vortex model. We also find good agreement between the vortex positions

a Monte-Carlo simulation, showing the vortices are in a thermal equilibrium. The second

half of the present thesis investigates the trajectories of vortex-antivortex pairs (dipoles),

in inhomogeneous condensates. In optics, Snell’s Law is one of the most ubiquitous and

useful equations. It was known to the Persian Scientist Ibn Sahl as early as 987 (some seven

centuries before Newton’s Philosophi Naturalis Principia Mathematica), before Willebrord

Snellius (Snell) rediscovered it in 1621. Snell’s law is a direct consequence of the conservation

of linear momentum. Dipoles, in homogeneous condensates have linear trajectories and are
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Figure 1.3: Experimental dipole, vortex-antivortex pair, positions in a homogenous condensate
over time a)-f) with images taken every 25ms. The dipole carries linear momentum and energy,
suggesting an analogy to Snell’s law.

the two dimensional equivalent of a smoke ring. As a dipole carries both linear momentum

and energy we expect an analogous Snell’s law to hold for a dipole passing through a step

di↵erence in condensate density. This has been shown to hold on both analytic grounds and

with GPE simulations [29]. The experimental observation of dipole reflection or refraction

across a step change in condensate density has proved challenging, even with the high degree

of optical manipulation of the experiment provides. Instead we have opted to implement a

linearly varying condensate density using a magnetic field. Dipoles travelling through the

condensate now take curved paths, similar to sound waves in the atmosphere. The vortex

separation, analogous to the frequency of a photon, can also be seen to change over the

trajectory.

Regrettably, due to the large amount of subject matter, this thesis is very lengthy and

has been divided into 8 chapters. Hopefully this keeps the content of each chapter somewhat

self-contained and thematically consistent to the reader. The structure of remainder of this

thesis is as follows. Chapter 2 covers a brief introduction to Bose-Einstein condensation, the
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Gross-Pitaevskii equation, the hydrodynamic formulation, quantised vortices and the point

vortex model. This forms the backbone of the theory content. This is quite well understood

and many textbooks have been written on the subject including [27, 28, 30]. Chapter 3 covers

Onsager’s theory of vortex clustering in the point vortex model, the mean-field point vortex

model, and the work of Smith and O’Neil [19], who investigate the chiral system. Chapter 4

covers the work of Cawte et al. [29], where the behaviour of a dipole is shown to obey a

Snell’s law relation. Also contained is a versatile experimental scheme for generating on de-

mand vortex dipoles, with a high degree of control over initial vortex positioning. Chapter 5

covers the relevant aspects of the experiment that apply to Chapters 6 and 7, particularly

the operation of the DMD, while much more thorough descriptions are presented in [31, 32]

. Chapter 6 covers our experimental results of on-axis, o↵-axis and non-equilibrium initial

vortex conditions in the chiral system with our analysis using the GPE, dynamic point vortex

model, and Monte-Carlo methods. Chapter 7 covers GPE modelling of dipole trajectories

across a step change and with an inhomogeneous change in condensate density. Preliminary

experimental results dipole trajectories are also presented. Chapter 8 concludes with a sum-

mary and outlook.

Readers more interested in the theoretical basis of this thesis may find Chapter 5 less in-

teresting and can skip details. Similarly readers less interested in theoretical background,

may find Chapter 3 quite heavy and can pass onto the experimental results of the chiral

system in Chapter 6, even though they share the same subject matter. Similarly Chapter 4

is followed by Chapter 7 thematically, choosing to read the chapters in this order may make

the content flow better to the reader.

1.1 The Project and Contributions

This was a highly collaborative project. I first joined the UQ BEC lab for an undergraduate

research project. I also did my capstone project with the same group, which originated the

idea of the chiral clusters project. I elected to complete my honours degree over 3 semesters,

with the honours thesis project over the last two. All of the experimental data, taken for
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the chiral cluster system, was performed in the first semester of my honours degree shortly

prior to the commencement of the thesis project. As such it should not be considered as

contributing to the thesis. However all of the numerical modelling of the chiral system has

been completed during my honours project. BEC experiments are always collaborative due

to the complex nature of the apparatus, and the nature of day to day operation.

1.1.1 Chiral Clusters

This experiment is closely related to the experiment that Guillaume performed [13], so much

of numerical tools required to investigate this system, such as the vortex detection algorithm

and dynamic point vortex model were readily available. Contributions as a rough percent

for this experiment, and its numerical investigation are displayed below

Project Kwan Tyler Matt Guillaume

GPE Simulations 95 0 5 0

Dynamic PV simulations 20 0 80 0

PV Monte-Carlo 40 0 60 0

Experimental data 33 33 0 33

1.1.2 Dipole Optics

Rough contributions as percentages for the second project

Project Kwan Tyler Matt Guillaume

GPE Simulations 100 0 0 0

Experimental data 70 15 0 15



2
Bose-Einstein Condensation

Bose-Einstein condensates were first theorised by Albert Einstein in 1925, after correspon-

dence with Satyendra Nath Bose. Bose investigated the statistics of photons, which are

indistinguishable and symmetric under particle exchange, and have markedly di↵erent be-

haviour to classical particles. This represented a radical new understanding of particles and

created the field of quantum statistics. More than 70 years after Einstein’s initial prediction,

atomic BECs were first created in 1995 by a research team lead by Eric Cornell and Carl

Wieman, using 87Rb atoms [4]. Their work was followed by a team led by Wolfgang Ketterle

using 23Na [33]. Cornell, Ketterle and Wieman were jointly awarded the 2001 Nobel prize

for their contributions.

Atomic BECs, dilute vapours held in a vacuum, are easily manipulated with magnetic and

optical fields. The weakly interacting individual atoms allow for a high degree of control

9



10 Bose-Einstein Condensation

over the atom’s internal quantum states. This allows numerous methods of cooling, imaging

and manipulating the condensate. Cold atom experiments have now been formed with 17

di↵erent elements as well as numerous isotopes, molecules and mixtures [28].

A qualitative understanding of Bose-Einstein condensation there is critical temperature TC

where the atomic thermal de Broglie wavelength, �T =
q

2⇡~2
mkT

, is comparable to the inter-

atomic distance. When this occurs, the atoms become spatially indistinguishable, and form

a macroscopic coherent wavefunction. This occurs at a temperature on the order of

Tc = C
~2n2/3

mk
, (2.1)

where C is a numerical factor. Bose-Einstein condensation can be considered more rigor-

ously by looking at macroscopic occupation of the groundstate. The symmetry of bosons

under particle exchange leads to “bosonic enhancement”, where bosons have a preference for

occupying the same state, compared to classical particles, and opposed to fermions which are

anti-symmetric obey the Fermi-exclusion principle. Bosons are thermally excited into higher

energy state preventing them from sharing the groundstate. However, at a su�ciently cold

temperature, the bosonic enhancement overcomes the thermal fluctuations and the atoms

“condense” into the groundstate analogous to condensation of water. In the case of non-

interacting bosons, the occupancy of energy levels is given by the famous Bose-Einstein

distribution

ni("i) =
gi

e("i�µ)/kT � 1
, (2.2)

where gi is the degeneracy, µ is the chemical potential, "i is the energy level of the ith particle,

k is Boltzmann’s constant, and T is the temperature. Einstein showed there is a certain

critical temperature, TC , at which a macroscopic occupation of the groundstate is achieved.

In the case of no interactions allowed energy states are given by the Schroedinger equation,

and in the many particle limit, the particle density is well approximated by n(r) = | (r)|2,

where n(r) is the number density of particles in the groundstate, rather than the number

occupancy of an energy level given by Eqn. 2.2.
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2.1 The Gross-Pitaevskii Equation

The Gross-Pitaevskii equation (GPE) was independently developed by Eugene Gross [34] and

Lev Pitaevskii [35] around 1961, both in an e↵ort to investigate the structure of quantised

vortices. The Gross-Pitaevskii equation describes a many-body wavefunction, rather than

the single body wavefunction in the Schroedinger equation. The GPE describes the BEC as a

semi-classical field, as in the many particle limit, N >> 1, we can approximate a†a = aa
† =

N , where we have neglected the commutator [a, a†] = 1 as the addition of an additional

particle will have little e↵ect on particle number or chemical potential. Deriving the GPE

uses a mean-field approximation and considers only two body s-wave scattering collisions.

It accurately models the dynamics of a single species weakly interacting dilute gas BEC at

zero temperature.

i~ @
@t
 (r, t) =

✓
�
~2r2

2m
+ Vext(r, t) + g| (r, t)|2

◆
 (r, t), (2.3)

where g = 4⇡~2a/m, a is the s-wave scattering length, Vext is an externally applied potential,

and m is the mass of the bosons. For 87Rb, the interaction between atoms are repulsive, so

g > 0.

Under certain conditions the kinetic energy term becomes negligible compared to the poten-

tial and interaction terms. Neglecting the kinetic energy term is known as the Thomas-Fermi

approximation, and provides a simple expression for the density,

n(r) = | (r)|2 =
µ� Vext(r)

g
, (2.4)

where µ is the chemical potential and µ = gn for a homogenous condensate. The chemical

potential is given by µ = @E

@N
. The Thomas-Fermi approximation can be interpreted as

a solution requiring the same amount of energy to add an extra particle anywhere in the

condensate. This is a good approximation of the groundstate in our experiment which

typically has several million atoms [27, 28]. By changing the applied potential, we can

manipulate condensate groundstate.
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2.1.1 Healing length and Bogoliubov speed of sound

It is very useful to define a coherence length of the condensate, a distance comparable of

that where a homogeneous condensate regains its bulk value close to local perturbation. By

assuming the boundary conditions  (0) = 0 and  (1) =  0 and no external potential, we

obtain the analytic solution

 (x) =  0 tanh

✓
x

⇠

◆
, (2.5)

where the healing length is defined as ⇠2 = ~2/mng. An excitation will travel at the Bo-

goliubov speed of sound s =
p

ng/m = ~/m⇠. This allows us to define a natural time unit

known as the healing time ⌧ = ⇠/s = m⇠
2
/~.

2.1.2 Quantum Fluids and Hydrodynamic formulation

From the Gross-Pitaevskii equation, we can directly derive the hydrodynamic equations. We

re-express the wavefunction in terms of the density and phase  =
p
ne

i�, with the phase

defined as �(x, t) = arg( ). The velocity field given by

v(r) =
~
m
r�(r). (2.6)

It is then possible to derive the Hydrodynamic equations

@v

@t
= �

1

mn
rp�r

✓
v2

2

◆
+

1

m
r

✓
~2

2m
p
n
r

2pn

◆
�

1

m
rV (2.7)

where m is the boson mass, n is the density, V is an applied potential, and p = @E

@V
is the

pressure. This equation is analogous to the Euler equation from classical fluid dynamics that

describes inviscid fluid flow

@v

@t
= v ⇥ (r⇥ v)�r

✓
v
2

2

◆
�

1

mn
rp�

1

m
rV. (2.8)

It is important to note that since r ⇥ v = 0, unless a vortex is present, this term usually

doesn’t contribute. We also have the quantum pressure term
1

m
r

✓
~2

2m
p
n
r

2
p
n

◆
due to

spatial variations in the magnitude of the wavefunction which has e↵ects on scales smaller

than the healing length [28]. This shows that a dilute weakly interacting bose gas obeys the

same equations as a perfect inviscid fluid.
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2.1.3 Quantised Vortices as topological defects

Figure 2.1: Quantised vortices in vortex lattices. These rigid body triangular lattices are the
lowest energy states in a rotating superfluid. The images are from liquid 4He, left [36], in a lattice
of supercurrent flow, top right [37], and previously in BECs bottom right [38].

The vector-calculus identity, r ⇥ (rU) = 0, where U is an arbitrary continuous scalar

function, implies the velocity field given by equation 2.6 is irrotational, so long as ✓ is

continuous. However, if there is a discontinuity in phase, the identity no longer applies and

fluid rotation is permitted. Using the Cauchy residue theorem, integrating the phase around

a closed path gives

�� =

I
r� · d` = 2⇡n, where n is an integer, (2.9)

with the circulation given by

� =

I
v · d` =

~
m
2⇡n =

h

m
n = n. (2.10)
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This means, unlike a classical fluid, vortices in a BEC are quantised in units of h/m
1.

The phase, ✓, is continuous everywhere except for the vortex singularity, so the velocity of

the superfluid grows to infinity approaching a vortex core. To avoid an infinite energies,

the wavefunction density must go to zero towards the singularity. In three dimensions,

this results in quantised vortex lines, and in two dimensions, it implies quantised point

vortices (with some structure) [28]. These have been widely observed in superfluids and in

superconductors. A striking example of this are triangular vortex lattices shown in Fig. 2.1.

Due to the nature of the discontinuity in phase, single vortices cannot be created or destroyed

in the middle of the condensate. Instead they can only be generated or annihilated in vortex-

antivortex pairs, and single vortices can only introduced or leave the condensate through a

boundary. It is also energetically favourable for two vortices to form rather than a single

vortex of circulation 2h/m, so any vortex in the condensate will have circulation ±h/m.

2.2 The Point Vortex model

While the GPE is very accurate and takes into account density changes, surface waves, and

other e↵ects, the GPE is computationally expensive compared to the point vortex model.

The point vortex equation can be derived from the Euler equation (equation 2.8) describes

the dynamics of inviscid fluids. The vorticity field is defined in terms of the velocity as

!(x, y, z) = r⇥ v(x, y, z). (2.11)

The Euler equation in two dimensions can be expressed in terms of the vorticity as

D!

Dt
= 0, (2.12)

where D/Dt = @/@t+u ·r. This is a conservation law stating vorticity can be transported,

but not created or destroyed. Taking the limiting case where the circulation is generated by

point sources, analogous to the use of point masses in celestial mechanics or point charges

1Interestingly this was present without proof as a footnote in Lars Onsager’s 1949 paper on Hydrodynamic

turbulence [12], then re-discovered by Feynman [39]
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in electrostatics

! =
NX

i

�i

2⇡
�
(2) (x� xi) , (2.13)

where �i is the circulation of the ith vortex. The velocity of the fluid is given by

ẋ =
NX

i

�i

2⇡
·
ni ⇥ (x� xi)

|x� xi|
2

, (2.14)

where ni is the normal vector to the fluid and the point vortex equations of motion are

ẋj =
NX

i

�i

2⇡
·
ni ⇥ (xj � xi)

|xj � xi|
2

. (2.15)

The Hamiltonian formulation is then given by

H = �
1

4⇡

X

i 6=j

ij log rij, (2.16)

where i is the circulation of the ith vortex, and rij is the distance between the ith and jth

vortices, and Hamilton equations of motion by

i
dxi

dt
=
@H

@yi
, (2.17)

i
dyi
dt

= �
@H

@xi

. (2.18)

For this system xi and yi are canonically conjugate variables, as opposed to the typical

canonical variables x and p = m
@x

@t
a more typical system. This results in a first order ODEs

describing the point vortex dynamics. The fact that xi and yi are the canonically conjugate

variables has profound implications for phase space as we’ll see in Chapter 3.

Image vortices

In a bounded system, the fluid velocity across a boundary is zero. This can be accomplished

by the use of Green’s functions whereby an “image vortex” is placed to cancel the fluid

across the boundary mathematically equivalent to the use of image charges in electrostatics.

The Hamiltonian formulation is a conservative system, so vortices that stray close to the

boundary pair up with their image vortices and travel around the boundary until they pair
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Figure 2.2: Trajectory of a dipole, vortex-antivortexp pair, computed using the point vortex
model. The dipole carries linear momentum and travels in a straight line until the vortices pair up
with their images close to the boundary. Here the vortices travel around the boundary, constrained
by the image charges, until they pair up again and form a closed orbit.

up with another vortex. In a circular domain a vortex dipole will move in a straight line until

the vortices pair up with their images. These vortices will then travel around the boundary

of the condensate until they pair up with their original vortices forming a dipole again and

completing a closed orbit, see Fig. 2.2 for the dipoles trajectory. The use of image vortices

is extremely important both for understanding and modelling the system.

Noether’s theorem and conserved quantities

Noether’s theorem, put roughly, states that corresponding to every continuous transforma-

tion which leaves the Lagrangian invariant, there exists a conserved quantity. For a system

of point vortices, we have

• Invariance under time ! energy conservation

• Invariance under spatial translations ! conservation of linear momentum

• Invariance under rotations ! conservation of angular momentum
All of these quantities are conserved for a boundless system. The point vortex system has

2N degrees of freedom. More details on the derivation of the point vortex model can be
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found in the N-Vortex problem [30]. It needs to be stressed that the vortex energy and an-

gular momentum are separate quantities to the condensate energy and angular momentum;

however, they are closely related. It is also possible, and very useful, to reformulate these

equations using complex numbers, where express z = x + iy. This e↵ectively reduces the

number of equations by two and the form of the equations are simplified.

2.2.1 Circular Domain

The simplest bounded system is the circular disk, it was the trapping potential implemented

in both experiments. For circular domain, corresponding to every vortex is an image vortex

at r̄k =
rkR

2

|rk|
2
, where R is the trap radius. The Hamiltonian for this system is

H = �
1

4⇡

X

i 6=j

�i�j ln

����
ri � rj

R

�����
1

4⇡

X

i,k

�i�j ln

����
ri � r̄k

R

���� , (2.19)

and the angular momentum

M =
1

2

NX

j=1

�jr
2
j
. (2.20)

For the circular domain these are the only integrals of motion. The time evolution of more

than two vortices is expected to be chaotic in contrast to the unbounded domain case which

has three integrals of motion [40]. While not a conserved quantity, an extremely important

characterising parameter is the dipole moment

D =
X

i

sixiî+
X

i

siyiî,

where si = ±1 is the sign of the vortex. This is a vector quantity, however we also refer to

its magnitude as the dipole moment. The dipole moment is a measure of the symmetry of

a system. For a system of same signed vortices, the dipole moment is the average position

of the vortices.
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2.2.2 Motion of vortices in inhomogeneous 2D Bose-Einstein con-

densates

Alternatively the point vortex model can be derived from the GPE. It is possible to extend

the point vortex model, equations 2.16, 2.17, and 2.18, to non-homogeneous fluids by adding

a density gradient term. Groszek et al. [41] found equations of motion for point vortices

in a non-homogeneous condensate. Typically, in the literature, a phenomenological term is

added to the point vortex model to account for the motion of vortices close to the centre of

a harmonic trap. Groszek et al. derive a point vortex equation which has previously been

found in the literature [42–44] but not utilised. They show that this point vortex model

agrees excellently with the Gross-Pitaevskii equation in a harmonic potential [41].

If we assume evolution of the system is given by a non-linear Schroedinger equation of

the form i~@t = H with the Hamiltonian

H = �
~2
2m

r
2 + U(r, t). (2.21)

A singly charged quantised vortex at location r� = (x�, y�), which can be expressed as

z� = x� + iy� will have the local wavefunction

 � = (z � z�)⇢̃e
i�̃
, (2.22)

where ⇢̃ and �̃ are smoothly varying functions which represent the density and phase in the

absence of a vortex. The velocity of the vortex is then given by

vv(r�) =
~
m

⇣
r�̃� ̂⇥r ln ⇢̃

⌘
|r� (2.23)

⌘ vs(r�) + vd(r�), (2.24)

where we have a superfluid velocity vv due to ambient phase gradients vs(r�) = ~/m
⇣
r�̃

⌘

and a density gradient velocity vd(r�) = �~/m (̂⇥r ln ⇢̃). This formulation of the point

vortex model was shown to agree very well with simulations of the GPE in a harmonic

potential.
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Onsager Clustering of point vortices

3.1 Onsager Vortex Clustering

In his influential 1949 paper “Statistical Hydrodynamics”, Lars Onsager explores the statis-

tical mechanics of a system of point vortices. Onsager considers a system of point vortices,

with the Hamilton equations of motion, Eqn. 2.17 and 2.18. For homogeneous with with an

arbitrary domain the Hamiltonian will be of the form

H = �
1

4⇡

X

i 6=j

ij log rij + (image vortex potential), (3.1)

where rij is the distance between vortices, and image vortices dependent on the confining

geometry. If the fluid is confined to a finite area A, some unusual properties emerge. In the

point vortex model, the canonical conjugates are x and y and the phase space is equal to the

configuration space d⌦ = dx1 dy1 · · · dxn dyn. The total area of the phase space is given by

19
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Figure 3.1: The temperature of a point vortex system can be defined as ⇥ = �00/�0, where
�(E) =

R
H<E

d⌦ is the phase volume. This is the volume of phase space with energies below
E [12, 30]. Since �(E) is monotonically increasing from 0 to the total area of phase space An, it is
a bounded function and must have asymptotes as E ! ±1. A bounded monotonically increasing
function must also have a point of inflection. As � is monotonically increasing, the derivative of
the phase volume �0(E) must always be positive. The second order derivative �00 must also switch
from being strictly positive when E < Em, to zero at �00(Em) = 0, to negative as E > Em. This
that for E < Em the temperature is positive. For high energies above the critical energy, E > Em,
the temperature must be negative.

the integral over the phase space
R
d⌦ = (

R
dx dy)n = A

n. Onsager defines the phase-volume

as the volume of phase-space below a certain cut-o↵ energy H(x1, y1, · · · xn, yn) < E

�(E) ⌘

Z

H<E

d⌦ (3.2)

=

Z
E

�1
�0(E) dE . (3.3)

This has the limiting cases of �(�1) = 0, where two opposite signed vortices are on top of

each other, and �(1) = A
n, which is the total area of the phase space. We also have that

�0(E) > 0 for all E, and has a maximum value at some energy with �00(Em) = 0. For ener-

gies below Em, the temperature is given by ⇥ = �00
/�0 with 1 > 1/⇥ > 0, while at higher

energies E > Em we have 0 < 1/⇥ < �1. This definition of temperature is equivalent to

defining the entropy as S = ln�0(E). This negative temperature behaviour is illustrated in

Fig. 3.1.

Based purely on constraints of the phase-volume, we see that vortices must have a negative
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thermodynamic temperature at high energies. This implies that opposite signed vortices will

cluster together in dipoles at positive temperature (low energies) while at negative temper-

atures (high energies), same signed vortices will cluster. While the vortices want to spread

share the energy between them, the constraint of high energy causes like-signed vortices to

cluster together, see Fig. 3.2 to see the like-signed clustering, and opposite-signed clustering

in a real system. Any weaker or other signed vortices will have a negligible contribution to

the larger flow. Prediction is a remarkable result based only on the assumption that the

vortices are confined in a finitely domain.

Onsager remarks that the point vortex model doesn’t apply to most normal fluids in which

the flow is continuous and that vorticity emerges from bringing together same signed vor-

tices. The creation and destruction of vorticity is beyond this model. However Onsager

predicts that the vortices in a superfluid are quantised with circulation h/m, so superfluids

are a candidate for the point vortex model1.

3.1.1 Previous Experimental Observations of TWO SIGNED On-

sager Clustering in BECs

Onsager clustering has been directly observed in BECs only recently. Observation of a

neutral vortex system, a system with equal numbers of vortices and anti-vortices, at the

University of Queensland was performed by sweeping optical paddles through the conden-

sate to nucleate two opposite signed vortex clusters, which mean-field theory predicts is close

to an equilibrium state. The vortex clusters in such a system are in equilibrium and long

lived. This was compared to a more spatially random distribution of vortices created by a

sweep of barriers through the condensate, which do not appear to cluster [13].

At Monash University, Johnstone et al. [14] have observed vortex structures emerging out

of a random distribution of vortices. These were created by a sweep of barriers through the

1Much of Onsager’s work on hydrodynamic turbulence remained unpublished as private notes and corre-

spondences and and of Onsager’s results were subsequently rediscovered years later [20].
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Figure 3.2: From [13] Onsager clustering in the neutral system a) Sweeping optical paddles
through the condensate in order to create vortex clusters, b) vortex clusters shortly after nucleation,
clearly clustering in like-signed vortex distributions, a high energy state, c) visualisation of the flow
field from the point vortex model. d) creation of random signed vortices using a barrier sweep, e)
random distribution of vortices, with opposite-signed vortex clustering, a low energy state, f) the
spatially disordered flow field.

condensate. The vortices form larger flows through a process called evaporative heating,

whereby energy is lost from the least energetic vortices as they pair up into dipoles and

annihilate. Using Bragg imaging, which splits the condensate into the velocity field of the

condensate towards and away from the Bragg beam, the velocity field of the vortices can be

reconstructed. This can be used to detect the sign of individual vortices by comparison of

the flow field generated by point vortices. These point vortices can then be classified by an

algorithm which looks at number of free vortices, vortex pairs and vortex clusters. This is

compared to simulations and assigned a temperature based on the clustering statistics.

These results have been interesting, however the behaviour of the two-signed vortex sys-

tem quite di↵erent as we’ll see in Section 3.1.3. The previous study by Gauthier [13] simply

investigated the stability of initially injected vortex and anti-vortex clusters and compared
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the clustering statistics to a random initial distribution of vortices, with no investigation of

the relaxation into the equilibrium state. The study by [14], doesn’t inject vortices determin-

istically, so the energies and angular momenta of an initial configuration are not controlled.

While vortex clustering was observed, due to the evaporative heating mechanism the vortex

number changes rapidly making it hard to explore the parameter space.

3.1.2 Mean-Field theory of vortex clustering

Figure 3.3: Parameter space of Onsager vortex system. Region 1 corresponds to on-axis
vortices distributed around the centre. Region 2 corresponds to on-axis vortices distributed around
the edge. Region 3 corresponds to Onsager vortices o↵-axis. Region 4 is prohibited as there are no
states which can posses the required angular momenta and energies. Figure taken from Smith and
O’Neil 1990 [19].

Joyce and Montgomery (1973) first developed a mean-field theory to describe equilibrium

distributions of the guided centre plasma model, equivalent to equilibrium vortex cluster

positions [45]. They derive this by computing phase space volumes in the large N limit. The
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mean-field description is given by the Poisson-Boltzmann equation

r
2
 = exp

�
⌥� ⌥ !r

2
�

(3.4)

where  is the stream potential, � is the thermodynamic temperature, ! is a Lagrange multi-

plier corresponding to the rotation frequency, andr
2
 = �4⇡n(r). The neutral system, with

equal positive and negative vortices, has attracted much interest and can be re-expressed as

a sinh equation. Numerical solutions have been explored in [46, 47] with direct comparisons

to GPE and point-vortex simulations also performed in [48, 49], for solutions on a disk and

in a box respectively. GPE and point vortex simulations have been found to be in good

agreement with mean field theory. The mean-field model predicts self-organisation of vortic-

ity into large scale flows on the scale of the domain. The theory of the single-singed system

in a circular trap has been explored in detail by Smith and O’Neil in their 1990 paper “Non-

axisymmetric thermal equilibria of a cylindrically bounded guiding-centre plasma or discrete

vortex system” [19].

3.1.3 Nonaxisymmetric clusters (Chiral System)

For a system of same-signed vortices, dominant configurations at high energies shift o↵-axis,

for a fixed value of angular momentum. This transition breaks the symmetry of the system

and occurs due to competition between angular momentum, M =
P

i
r
2
i
, which keeps the

vortices at a certain distance away from the centre of the trap, and the energy, which causes

the vortices to cluster. The transition between the on-axis and o↵-axis clusters resembles

a second order phase transition and occurs at negative temperatures. Smith and O’Neil

investigate this behaviour by using a mean-field approach and comparing it to Monte Carlo

simulations [19]2.

2For consistency with the rest of this thesis, I will refer to this system as the chiral system as it is no-longer

mirror symmetric, due to the symmetry breaking transition. I will also refer to the equilibrium axisymmetric

states as on-axis clusters (unless they are ring states), and the non-axisymmetric states as o↵-axis clusters,

unlike Smith and O’Neil.
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The mean-field equation for the chiral system can also be expressed as

n(r) = n0 exp
�
4⇡�r�2

n� !�r
2
�
, (3.5)

Where r�2
n is shorthand for the solution to the Poisson equation with � = 0 at r = 1, and

subject to the constraints

Z
n dA = 1, E =

1

2

Z
n� dA , M =

Z
r
2
n dA . (3.6)

Smith and O’Neil (1990) note that Eqn. (3.5) is the approximate solution of the micro-

cannonical ensemble in the large N limit and can be derived in a number of di↵erent ways

which all assume that certain correlations are all weak [50? ? –52]. The finite boundary and

constraints on the angular momentum lead to thermal equilibria with a non-trivial mean

field. By fixing the angular momentum it is possible to find the explicit dependence of the

entropy (S) and inverse temperature (�) on the energy (E).

The entropy is maximised if the vortices form a single cluster single cluster. Smith and

O’Neil also note that a simple picture of understanding the o↵-axis transition comes from

the Boltzmann distribution Eqn. (3.5). In this equation, � can be seen to change the inter-

action between the vortices from repulsive at positive temperature to attractive at negative

temperature. The !r2 term represents the rotation of the cluster and can be considered as

a centred repulsive hill potential, equivalent to a centrifugal force. At low energies and low

angular momenta, the interaction between the vortices and their image charges will form an

e↵ective potential in the centre of the condensate causing the vortices to cluster on-axis, with

no centred repulsive hill to repulse vortices. At low energies and high rotation, the vortices

will be repulsed by this central potential and form a ring state. At high energies, the centre

of the repulsive potential and the image potential is at some distance, 0 < D < R, where D is

the dipole moment, which the vortices will cluster around due to the vortices self-attraction.

They note that the mean-field model indicates that the symmetry is broken continuously

indicating a resemblance to a second order phase transition. The dipole moment changes

continuously with large fluctuations near the transition energy, and is given approximately

by hDi =
p
E � Ec, above this critical energy.
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By linearising the mean-field equations they explore the behaviour of the vortex distri-

bution, at a fixed angular momentum, by varying the energy. At energies greater than the

transition energy (E > Ec) there is a bifurcation, with an on-axis and o↵-axis solutions, to

the mean-field equation. The o↵-axis solution is the thermodynamically stable configuration

which maximises the entropy.

Monte-Carlo simulations

Figure 3.4: The lines are the result of numerically solving the mean-field equations. The solid
line represents the symmetric branch, the dashed line represents perturbative bifurcation theory,
and the dashed dotted line represents the high energy approximation. The symbols are the result of
the demon Monte-Carlo simulations. With vortex numbers of +, N = 256; ⇥, N = 512; ⇧, N = 1024.
Figure taken from [19]

Smith and O’Neil then explore the system using a modified version of Creutz’s micro-

canonical Monte-Carlo algorithm, known as a demon Monte Carlo technique. The demon

is an extra degree of freedom that has some small energy and angular momentum range

|Ed| < EM , |MD| < MM . Two random particles are chosen and perturbed into a new

configuration, which is only accepted if the change to the energy and angular momentum
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is within the tolerances of the demon. The total energy and angular momentum are then

given by

ET = ED �

X

i 6=j

log |ri � rj|+
X

i,j

log
�
rj|ri � rj|/r

2
j

�
(3.7)

MT = MD +
X

j

rj (3.8)

The demon can be thought of as being in thermal contact with a heat reservoir and has a

Maxwell distributions which can be used to find the temperature of the ensemble.

As mentioned in Section 2.2.1, the dipole moment is an important charactering parame-

ter, and for the chiral system, is equivalent to the average vortex position. For a given

angular momentum the dipole moment will be zero up until a critical transition energy.

Above this the equilibria will shift o↵-axis, and the dipole moment will have an approx-

imately square-root dependency on the energy. Monte-Carlo simulations agree very well

with mean-field calculations; see FIG. 3.4. Near the transition energy, fluctuations in the

Monte-Carlo simulations grow quite large, resembling a second order phase transition.

3.1.4 Motivation for experimentally exploring the chiral system

Bose Einstein condensates have generally been limited to relatively low vortex numbers,

Smith and O’Neil’s simulations were performed in the large vortex limit and agrees very

well they use a minimum of 256 vortices in their Monte-Carlo simulations. Experimentally

we are limited to generating on the order of 20 vortices, therefore it is unknown how well

mean-field theory will model the system. The mean-field and point vortex model apply for

an idealised system with no condensate, energy, angular momentum loss in a homogeneous

system with no coupling to sound and perfectly hard-walls. It then poses the question of

how well the mean-field theory and Monte-Carlo methods simulates an experimental chiral

system. The dynamics of vortices in the chiral system also wasn’t addressed by Smith and

O’Neil, the relaxation time of vortices may conceivably take longer than the lifetime of an

experimental condensate. E↵ects of non-zero, temperature, coupling to sound, the e↵ects

of impurities, and other dissipative e↵ects are also of interest to the chiral system, as other



28 Onsager Clustering of point vortices

point vortex systems in general. It is also unclear if the finite vortex number will e↵ect the

parameter space, and if vortex distributions will still be purely characterised by just energy

and angular momentum. The vortices are a subsystem of the condensate that can have a

negative thermodynamic temperature. While clusters are an equilibrium state for the point

vortices, the condensate is still out of equilibrium, and a very interesting example of quantum

turbulence.



4
Analogy to Snell’s law

4.1 Reflection and Refraction of dipoles across a step-

change in potential

As we have previously seen, vortex dipoles in a homogeneous condensate have straight tra-

jectories. This implies the vortex-antivortex pair carries linear momentum, like light, and

suggests an analogy to Snell’s law in ray optics. Cawte et al. [29] have convincingly explored

this analogy both analytically and numerically. Unlike light, the behaviour of the dipole is

deterministic, and either reflects or refracts at the interface. There a set of angles close to

the critical angle where dipoles are momentarily captured by the interface and travel along it.

29
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By adapting an ansatz of the form
p
⇢(r) =

p
⇢0f(r) where f(r) = rp

r2+⇠2
is the den-

sity profile for a single vortex, it is possible to find the wavefunction for a vortex dipole, and

gives a Gross-Pitaevskii energy and dipole momentum of

Ed = 2⇡⇢0
~2
m


log

✓
↵d

⇠

◆�
(4.1)

P = |P| = 2⇡~⇢0d (4.2)

Where d is the dipole separation, ⇢0 is the background condensate density, ⇠ is the healing

length, ↵ is e
(1/4+1/2)

' 2.117 analytically close to a numerical value of ↵ ' 2.07, due to

di↵erences in core structure. The speed of the vortex dipole is then given by

vd =
@Ed

@p
=

~
md

. (4.3)

The dipole velocity is independent of ↵ as long as the vortex cores are separated, as the

dynamics of a single vortex is given by the local condensate density and phase. If there

is a step interface between two homogeneous condensate densities, conservation of linear

momentum parallel to the interface gives the Snell’s law relation

|Pi| sin(✓i) = |Pf | sin(✓f ). (4.4)

Conservation of energy constrains the separation as

df =
⇠f

↵

✓
↵di

⇠i

◆ ⇢i
⇢f

. (4.5)

This derivation assumes no loss of energy or momentum from acoustic waves created by the

vortices at the interface. As in optics, there is a critical angle where the angle of refraction

approaches 90 degrees

✓c = arcsin

✓
|Pf |

|Pi|

◆
. (4.6)

There is a critical separation between vortices before they lose their phase windings. At

this point, the two vortices become an object known as a Jones-Roberts Soliton (JRS) [53].

The JRS regime is reached when the fluid velocity between the two vortices approaches the

condensate speed of sound. The topological discontinuities in phase of the vortices annihilate
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Figure 4.1: a) low density step change ⇢1/⇢2 = 0.95, b) medium density step change ⇢1/⇢2 =
0.9, c) high density step change ⇢1/⇢2 = 0.85 Modified from [29]

leaving a ⇡ change in phase across the solition. The GPE simulations performed by Cawte

et al. imprint dipoles, using the vortex ansatz, at desired positions and angles, away from

a step interface in a hard walled box potential. Cawte et al. [29] show very good agreement

between dipole trajectories in GPE simulations and the Snell’s law relation, despite the

extra complexity of the GPE. The dipole momentum is dependant on dipole separation, and

a↵ects both angle of refraction and the critical angle. The dipole separation can be viewed

as analogous to the frequency or wavelength of a photon, with a dispersion relation like

light travelling through a prism. Dipoles travelling from low to high densities have a set of

angles close to the critical angle, where vortices are captured by the interface before either

being reflected or refracted. Across high to low densities, there is no critical angle and only

refraction occurs. While the vortices were imprinted in the simulations, a reliable method
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of vortex creation is required for generating dipoles.

4.2 On demand dipole generation using the “Chop-

sticks” method

Figure 4.2: Scheme of creating dipoles using the chopsticks method performed in the UQ
experiment [32]

By creating a blue detuned potential and splitting it into two potentials at an angle, su-

perfluid flow, and hence vortices, becomes pinned to the potentials. Since applied potentials

are easily manipulated, it is possible to move the pinned vortices around the condensate.

Shrinking the pinning potential releases vortices, at a controllable initial position. This

method be used multiple times in order to create somewhat arbitrary vortex configura-

tions [54, 55].

As the pinning potentials split, a channel will open between them with superfluid filling

this channel. Depending on the velocity of the pinning potential separation, the phase jump

across the condensate will change. For the generation of a dipole, the phase di↵erence will

relax to 2⇡. For lower beam separations velocities, if the phase jump is equal to ⇡ we can

create a dark soliton, another exotic excitation in the condensate, for lower beam separation

velocities no superfluid current will be pinned. It is possible to create greater phase windings

of 2⇡n, where n is an integer representing the number of vortices per pinning potential, by in-

creasing the separation velocity [54]. Multiple other methods of creating on demand dipoles
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exist, by sweeping either red or blue detuned potentials through the condensate [56, 57].

Using the “chopsticks” scheme with a highly oblate condensate of 87Rb Samson et al. [54]

were able to create vortex dipole pairs, using two blue detuned lasers to form repulsive po-

tentials. By linearly moving the pinned pinning potentials with an angle of 66 degrees they

observed reliable dipole creation in 86% of cases (out of 80), demonstrating the reliability

of this method. The authors also performed numerical simulations of this system using a

damped GPE, demonstrating the robustness of this scheme over a range of potential exper-

imental parameters.

Further control over the initial positions of vortex creation can be performed by moving

the pinning potentials. There are limits to this control as the vortices can become unpinned,

if the pinning potentials move against the superfluid flow. Moving the potentials at velocities

comparable to the Bogoliuabov speed of sound can also nucleate vortices [54, 55], similar to

creating vortices by moving a potential [56, 57].

4.2.1 Motivation for a Dipole optics experiment

The UQ BEC apparatus, in principle, has the capability of creating a step change in density

using the DMD and half-toning, as will be discussed in Section 5.2.1, allowing this experiment

to be performed. Many investigations of vortex dynamics in harmonic and flat bottom traps

has been previously made, however, the Snell’s law relation has not been experimentally

investigated. The physics behind this Snell’s law relation is well understood, and equally

applicable to Jones-Roberts solitons. An experimental demonstration of this technique would

show the capability of half-toning in exploring vortex physics, showing the feasibility of

vortex and soliton “optics” such as lenses. This would also allow us to probe the physics of

soliton-soliton, soliton-vortex, and dipole-dipole interactions.
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5
UQ experimental apparatus

The UQ BEC appartus confines a condensate of 87Rb in a highly oblate trapping potential.

Using a digital micromirror device (DMD), almost arbitrary optical potentials can be applied

to the condensate. This makes the experiment ideal for conducting experiments on almost

two dimensional superfluids. In addition to vortex experiments, this makes the apparatus

well suited for atom interferometry, and atomtronics [32]. The following summarises the

relevant operation of the experiment that pertain to the chiral cluster and dipole optics

experiments1.

1The experimental design has been updated over the years by a number of students under the supervision

of Dr Tyler Neely. Nick Parry assembled major components, such as the vacuum system and magnetic

transfer coils. Isaac Lenton was instrumental in adding the DMD. Guillaume Gauthier has made many

additions, such as the field zeroing coils, and a redesign of the vacuum system. During my time on the

experiment I have not designed or installed any components; however, operating the experiment, realigning

optical paths, and other adjustments have comprised a significant portion of my honours project.

35
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5.1 Optical, Magnetic and Evaporative cooling

Figure 5.1: Render of the vacuum system, comprised of the 2DMOT, 3DMOT and fused science
cell. The 3DMOT is an octogon giving access to the 6 counter-propagating 3DMOT beams. The
3DMOT chamber and science cell are made from quartz and have a broad spectrum anti-reflection
coating. The science cell is quite thin for cold atom experiments at 1.25mm providing close access
to for optical elements, allowing commercial microscope objectives to be used [32].

The realisation that light exists in discrete energy packets or photons, that can be emit-

ted or absorbed by atoms, was one of the first major steps towards the development of

quantum mechanics [58, 59]. Linear momentum is conserved, it is possible to slow down an

atom with photons. This is the principle behind optical cooling, and is utilised to cool the

atoms down to the ultracold temperatures required for Bose-Einstein condensation. In the

laboratory reference frame, an observer sees atomic energy transitions shift depending on

the atom’s velocity. This can be used to selectively excite faster atoms into higher energy

states, which have a preference to drop to a lower energy level. This radiates a photon in a
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random direction on average slowing the atoms. This process known as Doppler cooling, can

also combined with Zeeman splitting, whereby an atom’s energy levels shift in the presence

of an external magnetic field, to spatially cool atoms as well.

The apparatus consists of three main components, the two dimensional optical-magneto

trap (2DMOT), three dimensional magneto-optical trap (3DMOT) and the quartz science

cell. Atoms sublimate from a sealed 1g Rubidium sample in a copper ampoule. The atoms

form a dilute vapour and are pushed along by a “zeeman slower”, a laser tuned to a tran-

sition line of the atoms in the presence of a magnetic field. The atoms are moved into the

2DMOT, further cooled, before being quickly loaded into the 3DMOT. Atoms then undergo

a compressed MOT stage (CMOT), where they are captured in a high 100 G/cm magnetic

field. Atoms are then trapped in a quadrupole field, using two coil pairs in an anti-Helmholtz

configuration, and transferred into the science cell. The field is increased and evaporative

cooling occurs, where the hottest atoms are allowed escape from the magnetic trap. Atoms in

the |F = 1,mF = �1i magnetically trappable state are selectively excited, with microwave

frequencies, to the |F = 2,mF = �1i non-magnetically trappable state. The atoms are then

loaded into a hybrid optical magnetic trap, provided by a red detuned (1064 nm) laser sheet.

The atoms are then lowered into a red detuned sheet and evaporatively cooled, by reducing

the power of the optical trap. Finally creating condensates of approximately 4⇥ 106 atoms

at a condensate fractions of 80%.

During this process, care must be taken to ensure no vortices are generated due to the

Kibble-Zuruk mechanism, where fast evaporation leads to topological defects in the phase

of the condensate [60, 61]. It is also important to ensure that the red detuned sheet is as

smooth as possible, as interference fringes in the sheet occur from back reflection from the

science cell. Large fringes in the red sheet can cause condensate flows as the red sheet power

is lowered, nucleating vortices.
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Figure 5.2: Details of the 3DMOT chamber and science cell. From the 3D magneto optical
trap, the atoms are in the |F = 1,mF = �1i magnetically trappable state and transferred to a
magnetic trap provided by the MOT coil. Transfer coil moves the atoms into another magnetic
trap generated by the BEC coil. After microwave evaporative cooling, the atoms are loaded into
a hybrid magnetic optical dipole trap (ODT), 1064 nm red detuned sheet, and undergo further
evaporation. They are then transferred into another optical dipole trap with optical trapping
in the x-y plane by (532 nm) blue detuned light projected from the digital micromirror device
(DMD) [62]. Not shown in this diagram is the custom 3D printed side zeroing coil assembly used
to cancel stray magnetic fields.

5.2 Optical control using the digital micromirror de-

vice (DMD

As optical fields are highly controllable, they allow the creation of configurable potentials.

Spatial light modulators (SLMs) are a common method for creating trapping potentials in

atomic optic experiments. A increasingly common method, in cold atom experiments, is

the use of a digital micromirror device (DMD), an array of individually controllable mirrors,

pioneered by the UQ experiment. DMDs o↵er high spatial resolution and fast refresh rates

of approximately 20 kHz. The relatively thin glass cell walls the experiment allow high

resolution, low focal length, optics to be used for both applied potentials and imaging. The

DMD projects blue detuned 532nm light onto the atoms trapped in the red sheet. The

resolution of the experiment between that of atomic microscope experiments and and more

traditional BEC experiments.
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Figure 5.3: To demonstrate the abilities of DMD half-toning it is possible to create a combined
RGB image using the DMD. Here we take a potential based o↵ a colour channel of an image (red,
green and blue), then use it to contain the atoms as the groundstate of the wavefunction in the
Thomas Fermi approximation assumes the state of the potential n =  2 = (µ � Vext)/g. This
creates images of each of the individual channels. When all three are combined it creates a colour
RGB image. This can be further improved using the feedforward method to create a smoother
condensates. This method allows us to use the BEC as a new artistic medium.

5.2.1 Half-toned optical potentials using the Floyd-Steinberg dither-

ing algorithm

While the mirrors in the DMD can only form a binary pattern, light from a single mirror

will di↵ract. The size of the illuminated spot from a single mirror is given by the point
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Figure 5.4: a) the Visitech LUXBEAM 4600 DMD used the in experiment, with a total of
(1200⇥ 1900) mirrors. DMD controller has on-board storage of up to 13,889 frames, and a refresh
rate of 20, 000 Hz [63]. b) single mirror activation on a DMD [64]. Due to di↵raction from individual
mirrors the size of a spot illuminated by a single mirror will have FWHM of 630(10) nm. This is
smaller than the individual mirror size. As the individual spots created by the mirrors will overlap,
it is possible to create applied laser intensities between 0 and the maximum laser intensity 5µ. This
is performed using an error di↵using (dithering) algorithm and has the ability to create smooth
almost arbitrary potentials. [62]

spread function, which has a 630(10) nm full width half maximum (FWHM) on the atomic

plane. The optical potential in the atomic plane from the projected light is a convolution

of the binary mirror pattern and the PSF, resulting in a smoothed projected pattern. From

the binary mirror pattern, apparent shades or “half-tones” that will be smoothed due to

di↵raction, can be created with the use of a dithering algorithm, based on the Floyd-Steinberg

algorithm. This is an “error-di↵usion” algorithm that assigns an error based on the di↵erence

between a pixel and desired shade, and propagates spreads this error to the surrounding

pixels determining the binary value of a pixel [65]. The suitability for dithering a DMD

in cold atom experiments was shown by Liang et al. [66]. This allows for near arbitrary

potentials to be applied to a BEC. We have demonstrated the capability of the experiment

by creating replicas of artworks, such as the Mona Lisa and Starry Night, on a quantum

canvas. Furthermore by splitting a colour picture into its red, green, and blue component

channels, it is possible to make colour BEC patterns.
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5.2.2 Feedforward method of creating desired potentials

While the dithering method works relatively well, aberrations and foreign particles, such

as dust, in the optical path of the DMD obscure the projected blue detuned light, causing

imperfections in the applied potential. In order to correct for these aberrations, it is possible

to modify the DMD pattern, using either an image of the projected light, or an image of the

condensate. In practice we create an error-map, from the di↵erence between the condensate

density and desired density. The error-map is then feedforward, by switching mirrors on or o↵

proportionally in proportion to the di↵erence. In areas of lower than desired density, mirrors

are turned o↵, lowering the applied potential and visa versa, converging the condensate

density to towards a desired profile. Unfortunately there are also aberrations in the imaging

path of the experiment which has the a↵ect of adding false corrections. It is very di�cult

to tell whether a condensate in reality is smooth, or if only the image of the condensate is

smooth [32, 62].

5.3 Imaging

In order to check the alignment of the system, the number of atoms in the condensate

number, and fraction of condensed atom, side imaging is required. Under expansion free of

external potentials the atomic cloud will expand (and simultaneously fall due to gravity).

Two distributions will emerge, the tightly peaked Bose-Einstein distribution of atoms in the

groundstate, and a broader thermal distribution. Numerical integration of these distribu-

tions gives the number of condensed atoms, and atoms in the thermal cloud, and hence the

condensate fraction. Side imagine is was captured using a PROSCILICA camera. The thin

glass walls of the science cell allow a high numerical aperture NA = 0.45, low focal length

lens to be used for vertical imaging. This o↵ers high resolution imaging with a resolution of

around 600nm slightly greater than the vortex healing length. This images atoms in the x-y

plane, and was used to take all of the experimental data presented in this thesis. Due to the

short focal length, care was taken to ensure that the atoms were in focus.
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Figure 5.5: Scheme of Faraday imaging A) Light travelling through the science cells without
the presence of atoms doesn’t change polarisation, and is dumped. B) Light travelling through
atoms picks up some phase, and isn’t dumped by the halfwave plate, showing the density of the
atoms [32].

Absorption imaging is the simplest and most common imaging scheme for cold atoms. An

applied (780nm) imaging beam absorbed as it passes through atoms, resulting in a shadow of

the atomic cloud. This is subtracted from an image without a condensate, to give the density

of the atoms. Imaging is performed on the 52S1/2 |F = 2i to 52P3/2 |K
0 = 3i transition line,

which requires the atoms to transferred from the |F = 1i to the |F = 2i state immediately

prior to imaging.

Faraday imaging relies on change of polarisation as the imaging beam passes through the

atomic cloud. This is more sensitive to density fluctuations than absorption imaging, so it is

the preferred method of imaging vortices and used for all the data presented in this thesis.

Vortex Detection Algorithm

It is also possible to locate the positions of vortices from images of the condensate density

using a Gaussian blob detection algorithm. This takes the Laplacian of a smoothed image,

as vortices change the density of the condensate these will appear as “blobs”, a threshold is

applied to the Laplacian and position of the “blobs” are found by fitting Gaussian distribu-

tions to them [13]. There is some error in the algorithm, where false vortices are detected
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and some vortices are ignored, however it is still relatively accurate. This method is rela-

tively robust, however the smoothing, and threshold values need to be adjusted occasionally

to improve the vortex fitting.
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6
Experimental observations of Onsager

Clustering in the Chiral system

In this chapter we present an experimental study of equilibrium states of the chiral system,

as was investigated by Smith and O’Neil [19], and discussed in Chapter 3. While other

papers have experimentally investigated the behaviour of a system of vortices and anti-

vortices notably Jonestone et al. [14] and by Gauthier, Neely et al. [13], the chiral system

has not been experimentally investigated. The chiral system is more attractive in many

ways, opposed to the two-signed system, as the vortices cannot annihilate one another,

so vortex loss is lower and cluster stability is higher. Initial vortex cluster states can be

deterministically injected into the condensate by the use of optical paddles sweeps, which

allows equilibrium and non-equilibrium clusters to initially created. We observe both on

on-axis and o↵-axis vortex cluster equilibrium states, as well as the relaxation of an initially

45
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non-equilibrium state. The experimental data is very well modelled by GPE, dynamic point

vortex, and Monte-Carlo point vortex simulations. In particular this allows us to probe

the parameter space and address the question of how long a non-equilibrium state takes to

thermalise into an equilibrium state.

6.0.1 Vortex injection methods and 2D GPE simulations

In order to observe the axisymmetric and non-axisymmetric states predicted by Smith and

O’Neil [19], it was necessary to use repeatable deterministic vortex nucleation techniques.

It was decided to create equilibrium vortex clusters centred on-axis, o↵-axis and well as a

non-equilibrium state. We should note that the previous work of Gauthier, Neely et al. [13]

does not address the relaxation of non-equilibrium states or probe the parameter space of

the vortex system. The non-equilibrium state was chosen to be two o↵-axis clusters mirror

symmetric clusters. From mean-field theory and Monte-Carlo simulations we expect this

to relax into an o↵-axis cluster (due to its relatively high angular momentum). However,

the time required for this to occur in a real system was unknown. While the choice of a

non-equilibrium initial state is arbitrary, the two cluster initial state has a dipole moment

close to zero ie. the average vortex position lies at the centre of the trap. The dipole moment

is a measure of the distribution of the vortices and hence the symmetry of the system.

As we are generating single signed vortices, they must be introduced via the boundaries

of the fluid due to their topological nature. The vortex injection methods all rely on op-

tical paddles swept through the condensate using the dynamic capacity of the DMD. This

was performed over 200 frames leading to a approximately smoothly time varying potential,

analogous to sweeping paddles through water. In order to ensure that these methods only

inject a single signed vortex, and leave the condensate density otherwise relatively homoge-

neous, a dimensionless simulation of the damped GPE, of damping factor � = 5⇥ 10�4, was

performed, as discussed in Appendix A. These were performed on (400, 400) lattices with

a width of 120⇠, and externally applied potential trap or radius 100⇠, closely matching the

experiment. The simulations were run for 20, 000⌧ , or approximately 7.7s in a real system,
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and sampled every 10⌧ , or 4ms. While the simulated parameters are close to that of the

experiment, small variations in the size, shape and velocity of the paddles can greatly change

the density and number of vortices in their initial cluster. . Finding vortex injection methods

that created tight vortex clusters with adequate vortex numbers that were repeatable was

time consuming experimentally and numerically.

Simulations provide insight into the behaviour of the system dynamically, compared to

experimental images which are destructive and require a new experimental run for every

image. Bragg imaging, which could have detected the velocity field of the condensate, was

not performed for this system [13]. The simulations give confidence that the vortices are all

same signed and that sound waves and solitons are absent from the initial vortex state. The

qualitative agreement between point vortex simulations and the data provides confidence in

the preparation of the initial state. Slight changes in condensate density and the presence of

sound could change the number of nucleated vortices from experimental sweeps using these

methods, however the clusters have been observed to be relatively consistent in their number

and location.

The distributions of the vortices, and hence the dipole moment, are statistical and require

multiple simulations to find their behaviour. This requires unnecessary computational e↵ort

compared to the simple point vortex model, which allows us to capture adequately capture

much of the physics with far less computational cost.

Centre Pinning (on-axis cluster)

Vortices can captured or pinned by an potential in the condensate. As the condensate density

is lower, the flow fluid induced by a vortex is lowered, and the vortex energy is reduced. This

can alternatively be thought of as pinning superfluid flow around a potential, similar to the

use of chopsticks in Chapters 4 and 7. The use of a central pinning potential is used to

create initially on-axis clusters. This was done with a pinning site with radius of 30⇠, or

around 15µm experimentally. In order to create superfluid circulation around the pinning

potential, a paddle of width 4⇠ or 2µm was extended radially from the pinning potential
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Figure 6.1: On-axis vortex cluster injection simulation using the unitless 2D GPE with numer-
ical damping term � = 5⇥ 10�4. Images are shown at times a) 0⌧ (0 s), b) 500⌧ (0.19 s), c) 1000⌧
(0.38 s), d) 1100⌧ (0.42 s), e) 5000⌧ (1.92 s), and f) 20000⌧ (7.70 s). This is the system in the top
row of Fig. 6.5

to the boundary and rotated around the centre of the trap. The paddle was removed by

shrinking it into the central pinning potential, in order to leave a total of 13 quanta of

rotation around the pinning potential. During the retraction a single vortex of the same sign

was left within the condensate, matching experimental images which often have an extra

vortex outside of the cluster. See Fig. 6.1 for details of the simulation. The presence of a

single extraneous vortex has little e↵ect on the behaviour of the central cluster. A damping

factor of � = 5 ⇥ 10�4 was used in this simulation resulting in a qualitatively wider spread

of vortices than observed experimentally.

Single Sweep (o↵-axis cluster)

After some experimentation using rotational paddle sweeps and moving vortices trapped on

a pinning potential, it was found that the most reliable way to generate a single cluster of

o↵-axis vortices was to linearly sweep a paddle through the condensate. The paddle has

width 4⇠ or 2µm and travels through the condensate at a velocity of 0.2c. The paddle is
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Figure 6.2: O↵-axis vortex cluster injection simulation using the unitless 2D GPE. This simu-
lation uses numerical damping term of � = 5 ⇥ 10�4. Images taken at times a) 200⌧ (0.077 s), b)
400⌧ (0.15 s), c) 600⌧ (0.231), d) 1000⌧ (0.39 s), e) 10000⌧ (3.85 s), and f) 20000⌧ (7.7 s). This is
the simulation in the middle row of Fig. 6.5

withdrawn as it passes halfway through the trap. This generates 12 vortices in an o↵-axis

cluster. After vortex nucleation the o↵-axis cluster stays in an o↵-axis cluster for the duration

of the simulation. See Fig. 6.2.

Double Sweep (non-equilibrium state)

Similarly to the single paddle case, two paddles can be swept through the condensate at

a velocity of 0.15c, generating two highly symmetric clusters with 7 vortices each. Unlike

experiments, there is a high degree of symmetry in this system, resulting no o↵-axis cluster

transition, as the damping factor � = 5⇥10�4 removes any noise that would break symmetry.

With zero damping � = 0, the o↵-transition occurs much later than seen in the experiment,

at around 17000⌧ , much later than that observed experimentally transition at 2s or 5200⌧ .
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Figure 6.3: Two vortex cluster injection simulation using the unitless 2D GPE. This simulation
uses numerical damping term of � = 5 ⇥ 10�4. Images taken at times a) 200⌧ (0.077 s), b) 400⌧
(0.15 s), c) 500⌧ (0.19s), d) 800⌧ (0.30 s), e) 1000⌧ (0.39 s), and f) 20000⌧ (0.77 s). Interestingly
for this simulation, the dipole moment is almost zero for the entire simulation as the two clusters
never merge, due to the simulations high degree of symmetry. This is the simulation in the middle
row of Fig. 6.5

6.0.2 Equivalence between GPE simulations and the point vortex

model

As a demonstration of the agreement of the GPE and the point vortex model, it is possible

to create the phase of the condensate using ✓ =
P

i
atan 2(y � yi, x� xi). The behaviour of

the vortices is only dependant on the local phase and density of the condensate (as discussed

in chapter 3) so as long as the vortices are separated further apart than a couple of healing

lengths the structure of the vortex cores have no significant impact on the vortex dynamics.

It is also worth noting that while the density and phase of the condensate does not appear

to resemble the flow of a classical fluid, such as a cyclone or soap film, the velocity field

bares a qualitative resemblance, as can be seen in Fig. 6.4, as demonstration of link between

quantum turbulence and classical two dimensional turbulence. This also demonstrates the

feasibility of imprinting point vortices onto the condensate, by applying this phase and the

vortex density anstaz n(x) = r/sqrtr
2 + ⇠

2, to an initial wave function and evolving it in
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Figure 6.4: Comparison of the point vortex model and the GPE, for the on-axis cluster, left, the
o↵-axis cluster, middle, and non-equilibrium state, right. The top row displays the GPE densities.
Middle row, the GPE phase, velocity field and marked point vortex positions. Bottom row has
the phase generated by point vortices, ✓ =

P
i
arctan((y � yi)/(x� xi)) (where the sum is over

the positions of all the vortices and image vortices), where the position of the vortices has been
taken from the GPE simulation, and velocity field from the point vortex phase. Notice while the
GPE and point vortex phases agree well, very subtle di↵erences in phase between the GPE and
PV models due to the presence of soundwaves and extra excitations in the condensate.

time.
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Figure 6.5: DMD paddle sequences, simulated initial vortex positions, experimental vortex po-
sitions and detected vortex positions: from left to right. Centre pinning a)-d) creates axisymmetric
vortex clusters; note the absence of an extra vortex in the example experimental data. Single sweep
e)-h) creates o↵-axis vortex clusters. Double sweep i)-l) creates two o↵-axis clusters with mirror
symmetry.

6.1 Experimental results

Condensates of around 4 ⇥ 106 atoms were formed in the red detuned (1064 nm) highly

oblate sheet with a trapping frequency of (!x,!y,!z) = 2⇡(1.8, 1.6, 106). Extra trapping in

the x-y plane was applied with blue detuned (532 nm) laser light reflected from the DMD

with a trap depth of around 5µ. The DMD trap was used to create a circular trap with a

diameter of 100µm. This is nearly a hardwall potential with some roll-o↵, due to the PSF

with a HWHM of 650nm. The resulting condensate in this potential is relatively homo-

geneous, as can be seen in the experimental figures. The condensate has a healing length

of approximately ⇠ = 500nm, in the centre of the trap and a Thomas-Fermi diameter of
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6µm vertically resulting in a Bogoliubov speed of sound of 1290µm/s. Care was taken to

ensure that magnetic fields across the condensate were cancelled with the side zeroing coils,

using the position of a centred cluster of vortices. As the vortex size is on the order of the

healing length around the resolution limit of the imaging system, a brief 3 ms period of free

expansion is performed before imaging, known as time of flight (TOF).

We took 40 sets of data for the centre pinning, 49 sets of data for the single sweep and

41 sets of data for the double sweep. Each set consists of images, taken 250 ms apart, from 0

to 6.75 s, so each set of time series data consists of 28 images. This comes to a total of 1120,

1372, and 1148 images respectively for the various initial conditions. We see good qualitative

agreement between the GPE simulations and the experimental data, for the initial nucle-

ation of vortices. We also see a relatively homogeneous condensate without the presence of

solitons, or other discernible large soundwaves. Much of the inhomogeneities in the images

come from imaging artefacts such as dust and other aberrations in the imaging system.

6.2 Mapping experimental data onto Point Vortex Model

By measuring the vortex positions with the Gaussian Blob detection algorithm [13], see

Section 5.3, it is possible to measure the vortex number and identify vortex positions, see

Fig. 6.5 for examples of the vortex detection algorithm in action. It is then possible use these

detected positions to map back onto the point vortex model in order to extract the energy,

angular momentum and dipole moment, as presented in Section 2.2.1. The energy is

H = �
1

4⇡

X

i 6=j

�i�j ln

����
ri � rj

R

�����
1
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Figure 6.6: Experimentally found point vortex number, energy, angular momentum, and dipole
moment. These were found by finding vortex positions using the vortex-detection algorithm, and
the point vortex model. These experimental results will be compared to a number of simulations

6.2.1 Imprinted vortices in a dynamic GPE simulation

Using the experimentally found vortex positions, it is possible to imprint vortices at arbitary

locations in the condensate by taking the Thomas-Fermi approximation for the groundstate,

and using the Ansatz for the local density around a vortex n(r) =
|r� ri|p

|r� ri|2 + ⇠2
, and

the phase ✓ =
P

i
atan 2(y � yi, x � xi), generated by these vortices. Due to the computa-

tional time involved with performing a GPE simulation, only a single initial experimental

configuration was used to simulate an experimental run. Surprisingly even with just a single
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Figure 6.7: A single trajectory of imprinted vortices (marked with a solid line), based on ex-
perimental positions, using the GPE compared to experimental data. Qualitatively these appear
to relatively well match the vortex number, energy, angular momentum and dipole moment, which
some variation due to the vortex-detection algorithm, playing up with vortices leaving the con-
densate. Due to the computational requirements of the GPE, it wasn’t feasible to simulate every
initial vortex distribution using the GPE. The trajectory of the vortices using the GPE should be
compared to the trajectory of vortices in the dynamics point vortex model, shown in Fig. ??.

trajectory, the GPE simulation data appears to fit the experimental data rather well. This

potentially shows that simulations of the GPE are good enough to simulate the experiment,

however the average of many simulations is needed to show this, requiring some fine-tuning

of the damping parameter.
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6.2.2 Dynamic Point Vortex Model

Figure 6.8: Plots of the dipole moment, angular momentum, vortex number and energy over
time. The red and blue plots are the single on-axis and o↵-axis clusters respectively, which evolve
smoothly over time. The green plot is that of the two cluster case which quickly equilibrates into
a single o↵-axis cluster as can be seen in the dipole moment. The markers represent experimental
data, while the solid lines are point vortex simulations based on the initial vortex distributions

It is possible to take the the measured experimental vortex positions, and evolve them
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in time using a modified point vortex model.

ixi =
@H

@yi
dt+

p
⌘ dWx , (6.3)

iyi = �
@H

@xi

dt+
p
⌘ dWy , (6.4)

where H is the Hamiltonian, given by Eqn. 6.1, with dW a Gaussian noise term with unit

variance. Vortex annihilation is taken into account by removing vortices within a numerically

enforced vortex core size ⇠ of the boundary, where the core size is chosen to be the healing

length. A point vortex model has no dissipation, so energy, vortex number and angular

momentum are conserved, and has to be modified to include damping seen in real systems,

see Fig. 6.6. A damping term �, analogous to the phenomenological damping term in the

GPE, is typically used in point vortex simulations but this damping term poorly modelled

the dipole moment. It was found that a Brownian motion term better fit the experimental

data. The term
p
⌘ = 2⇥ 10�2 was found to fit the data for all three cases. While it might

seem counter-intuitive that the noise term would cause dissipation, one could consider a

random walk of a vortex within a cluster. As there are more ways, on average, for the vortex

to leave the cluster than to remain, the vortex separation will on average increase with time

reducing the energy. Similarly, there are more ways for the vortex to walk towards the edge

of the condensate than towards the centre, on average decreasing the angular momentum.

While the extra Brownian motion term in the point vortex model accurately captures the

dynamics of the vortices it is unclear why it works so well, especially compared to the im-

printed GPE simulations. A comparison between the experimental data and a more realistic

PGPE or SPGPE simulation may be quite informative in this regard.

6.3 Thermalisation and Demon Monte-Carlo

We can interpret the vortex equilibria positions to be the result of the cluster equilibrating

at some temperature. As the total energy and angular momentum decrease over time,

this equilibrium state relaxes. We perform a demon Monte-Carlo simulation following the

technique of Smith and O’Neil.
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Figure 6.9: Clustering Histograms on the left from measured vortex locations at times t = 0,
t = 1,t = 2.5, t = 6.75s, compared to histograms from Monte-Carlo ensembles on the right. Clearly
the experimental data matches the Monte-Carlo simulations well for the on-axis and o↵-axis initial
conditions. For the non-equilibrium initial condition of the two cluster state, the vortices start
in two clusters but relax into equilibrium over a short time-frame, see Fig 6.11 to see the dipole
moment of the data match that of the Monte-Carlo simulations. This demonstrates that the two
clusters have reached equilibrium. For all the histograms, except for the initial state of the two
cluster system, the vortex locations have been rotated such that their dipole moment lies on the
x-axis.

Core Repulsion

The dipole moment from this simulation is a little below of the dipole moment from the

experiment. The reason for this is it takes a lot of energy for two vortices to cluster due

logarithmic term in the Hamiltonian, Eqn. 6.1. The vortices want to distribute the energy

between them as much as possible, so in a real system its quite rare for vortices to be within a

few healing lengths of one-another, as we see from histograms of experimental vortex nearest

neighbour distances, no vortices cores are within 5 µm of another. A Monte-Carlo demon
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Figure 6.10: Demonstration of vortex core repulsion. In all cases the minimum nearest neigh-
bour distance between vortices was never less than 0.05 R, corresponding to 5 µm in the experiment.
This suggests enforcing a minimum vortex separation.

step, somewhat naively repositions a vortex randomly within some distance of its initial

position, and only accepting changes to the energy and angular momentum that lie within

the demon’s tolerances. It is possible for a pair of vortices to have a low separation and

very high energy, leading to the rest of the vortices being placed further apart. This leads to

slightly di↵erent clustering statistics to those of the experiment and dynamic point vortex

simulations. In order to crudely capture the the clustering behaviour we can just enforce a

minimum vortex separation of 5 ⇠, in any Monte-Carlo configuration. This leads to dipole

moments that accurately match the experimental data. We are able to create histograms

of the measured experimental data, and compare this to Monte-Carlo ensembles based from

the average energy and angular momentum of the experimental data. This agrees well with

the experimental histograms, see Fig.6.9, with the exception of the two cluster initial state.

This is expected as it is a non-equilibrium state and we observe the clusters relaxation into a

a single o↵ axis-cluster in equilibrium. The dipole moment is also a measure of the clustering

statistics and the experimental dipole moment of the non-equilibrium state can be seen to

quickly match that of the Monte-Carlo. To further show the agreement of the Monte-Carlo

simulations and experiment, that experimental vortices are in equilibrium, we time integrate

the experimental vortex locations and compare this to a similarly time integrated Monte

Carlo simulations, from 2s onwards in the experiment. While over 40 experimental runs

were performed, at each timestep for each experimental initial condition, the histograms

aren’t very smooth, as can be seen in Fig. 6.9. Integrating the vortex locations over time

result in a much comparison as can be seen in Fig. 6.12, where there very good agreement
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Figure 6.11: Demon Monte Carlo, with core repulsion, dipoles moments marked in grey. As the
experimental dipole moment matches that of the demon quite closely for the single paddle sweep
(o↵-axis cluster) and centre pin (on-axis cluster) cases, we can say that they are an equilibrium
state, in agreement with the mean-field calculations performed by Smith and O’Neil presented in
Chapter 3. We also see the dipole moment of the double paddle (non-equilibrium state) grows to
match that of the Monte-Carlo simulation within 2s, indicating that it has thermalised into an
equilibrium state

between the experiment and simulations. This indicates that all of the three cases are

in equilibrium, in good agreement with the Monte-Carlo simulation, and the mean-theory

prediction presented by Smith and O’Neil [19].
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Figure 6.12: Top: time integrated experiment vortex positions, taken over a period of 4.75s,
compared to by taking a individual Monte-Carlo at each time step and summing over all of them.
This is as there aren’t enough vortices to make smooth histograms for an individual time step. See
above figure.

Figure 6.13: Dipole moment transition at fixed angular momentum. Note the numerical square
root fit of the energy above the transition energy, where the system of the system is broken.

6.4 Symmetric breaking o↵-axis transition and param-

eter space

The defining feature of chiral system is the transition from symmetric on-axis vortex clusters

to the non-symmetric o↵-axis vortex clusters equilibria at high energies, the primary focus

of the 1990 paper by Smith and O’Neil [19]. The transition can only occur at a negative

thermodynamic temperature, and resembles a second order phase transition. In order plot

the parameter space, similar to Smith and O’Neil in Fig. 3.3, we calculated the dipole mo-

ment of the vortex system over a range of angular momenta and energy. At a fixed angular
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Figure 6.14: Plot of the parameter space. The top line separates the on-axis states from the
o↵-axis states, while the bottom line is the minimum allowed energy given by mean-field theory
E = 1

2 �
1
4 ln 2M [19]. The experimental average energy per vortex is plotted against the angular

momentum per vortex, with the initial state marked with a circle and the final states marked with
a star.

momentum, the dipole moment is constant below a certain energy threshold (in the infinite

vortex limit the dipole moment is zero, however for a finite number of vortices this is shifted

o↵ zero). Above this energy threshold there is an approximately square root dependence

of the dipole moment on energy. In order to find this transition we fit a a square func-

tion to the energy at a fixed angular momentum and record this threshold energy, see Fig.

6.13. We can then plot this and the minimum permitted energy from the mean-field theory

Emin = 1
2 �

1
4 ln 2M [19]. It is extremely di�cult to perform Monte Carlo simulations close

to the minimum energy, as there are very few permitted states to sample. It should our

parameter space we use M = Nv �
P

i
r
2
i
, the condensate angular momentum, as opposed

to the angular momentum that Smith and O’Neil use of M =
P

i
r
2. As none of the vor-

tex cluster states that we have experimentally created have an angular momenta less than

0.5, it is unnecessary to consider them. The parameter space that we calculated, Fig. 6.14,
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corresponds to the upper left quadrant of that found by Smith and O’Neil, see Fig. 3.3. In-

terestingly Smith and O’Neil find that there is only one on-axis state when M̄ = 0.5, which

corresponds to uniform distribution of vortices, however with the Monte-Carlo simulations

it appears as though there are a number of allowed on-axis states at M̄ = 0.5, which is

potentially a consequence of finite vortex number.

It might be informative to consider a few limiting cases. The first of which is the high

energy limit, in this case all the vortices are very tightly spatially localised, almost all occu-

pying the same point, and hence the dipole momentum D = r̄ is simply given by
p

1� M̄ ,

where M̄ is the angular momentum per vortex. The second is the low energy limit at low

angular momentum. Here the vortices are distributed close to the boundary, as near the

boundary the vortices are paired with their image vortices, the energy is minimised as well

as the angular momentum. This results in a ring state, and as Smith and O’Neil found the

on-axis states with an angular momentum less than M̄ = 0.5, with the new definition of

angular momentum, are all ring states.

We have found excellent agreement between experimental data and the point vortex model.

We also found that while GPE simulations accurately capture vortex nucleation they do not

accurately capture the o↵-axis transitions and more sophisticated simulations are necessary.

We have found that the dynamics of the vortices are accurately captured by a dynamic point

vortex equation with a stochastic term. Monte-Carlo simulations show that the vortices are

in, or very close to, a thermal equilibrium at every time apart the double paddle sweep which

thermalises after approximately 2 s. This is a very interesting toy system that we have a

great deal of control over.
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7
Dynamics of Vortex Dipoles and an analogy to

Snell’s Law

As discussed in Chapter 4, Cawte et al. [29], derive an analogous Snell’s law relation for

dipoles across a step change in density in a BEC. They verify this relation by direct com-

parison to a GPE simulation, and find excellent agreement. Our goal was to experimentally

implement, and observe the dipole trajectories directly. Previous work by Gauthier [13, 32]

indicate that creating a step change in condensate density is achievable using the technique

of half-toning, possibly refined using the feedforward technique, discussed in Section 5.2.2.

While our GPE simulations, for a realistic experimental scheme, agree excellently with the

results of Cawte et al. it appears as though the step changes made through the use of half-

toning don’t create smooth condensates for the dipoles. The Snell’s law behaviour can be

still be observed in a condensate of linearly varying density, analogous to the trajectory of a

65
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photon in a fibre-optic cable or a shock wave through the atmosphere. Due an experimental

fault, the condensate number may have varied dramatically from shot to shot, however qual-

itatively, dipole trajectories match that of GPE simulations. At the time of publication of

this thesis, the experiment is operational and will hopefully conducted soon. The experiment

could be extended to deterministically create Jones-Roberts solitons [53], create “optics” to

manipulate vortex dipoles, probe equilibrium vortex states of the condensate, and observe

soliton vortex interactions.

7.1 GPE simulations

Figure 7.1: “chopsticks” nucleation method, with images shown at 0⌧ ,b) 60⌧ , c) 300⌧ , d) 320⌧ ,
e) 400⌧ , and f) 540⌧ . d) has an in-figure of the short-lived grey soliton state, potentially of interest
to future studies.

In order to create a simulation of an experimentally implementable sequence, we use

a 100⇠ circular confining potential, with an additional step potential of either 0.1, 0.2, or

0.3µ, to create a step in condensate density. Dipoles were nucleated using the “chopsticks”

method at 33 di↵erent angles to the interface ranging from ✓ = 0 to ✓ = ⇡/2, the trajectories
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of the centre of the dipoles are shown in Fig. 7.3 along with the agreement between the

dipole positions and Snell’s law. The outgoing angles from interaction with the interface

agree excellently with both Snell’s law or reflection, see Fig 7.2 for example trajectories

with reflection and refraction. There are a few dipole trajectories in the anomalous cap-

ture regime described by Cawte et al. These travel along the interface and interact with

image vortices before either clear reflection or refraction, an unfortunate consequence of the

finite condensate size permitted by the experiment. Experimentally it seems likely that the

anomalous capture regime could be explored in any detail due to noise and inhomogeneities

in the system. While performing the dipole nucleation with “chopsticks”, see Fig. ??, we

observe a temporary grey soliton as the condensate phase relaxes to a change of 2⇡. While

it was noted that the phase relaxes when producing dipole pairs by Samson et al. [54], and

that a dark soliton could be created for a ⇡ jump, they make no note of the creation of grey

solitons. This could potentiality be exploited in future experiments.

Figure 7.2: Example GPE simulations of dipole trajectories. Left, refraction with ⇢1/⇢2 = 0.95,
✓ = 46�. Right, reflection with ⇢1/⇢2 = 0.89, ✓ = 52�, the red is the trajectory of the vortex and
the blue line gives the trajectory of the anti-vortex. The vortices are travelling left to right

7.2 Experimental dipole optics

Similar to the previous experiment, condensates of around 4 ⇥ 106 atoms were formed in

the red detuned (1064 nm) highly oblate sheet with a trapping frequency of (!x,!y,!z) =

2⇡(1.8, 1.6, 106). Extra trapping in the x-y plane was applied with blue detuned (532 nm)

laser light reflected from the DMD with a trap depth of around 5µ. The DMD trap was used
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Figure 7.3: Left to right, step potentials with a di↵erence of ⇢1/⇢2 = 0.84, 0.89 and 0.94
respectively. Top: trajectories of the average vortex position from GPE simulations in grey. The
initial linear trajectories of the vortices are marked in red, yellow, and purple for the refractive,
anomalous capture, and reflective regimes respectively. Note that the trajectories of dipoles in the
anomalous capture regime interact with their images before the outgoing angles can be accurately
measured. Bottom: relation of the ingoing dipole angle to the outgoing dipole angle. We see that
this obeys Snell’s law in dark blue, and the law of reflection, in green. The regime of anomalous
capture is presented in light blue

to create a circular trap with a diameter of 100µm. This is nearly a hardwall potential, due

to the PSF with a radius of 610nm. The resulting condensate in this potential was relatively

homogeneous. The condensate has a healing length of around ⇠ = 500nm, in the centre

of the trap, and a Thomas-Fermi diameter of 6µm vertically, resulting in a Bogoliuabov

speed of sound of 1290µm/s. Care was also taken to ensure that magnetic fields across the

condensate were controlled with the side zeroing coils, and either cancelled, or a applying a

linear gradient. As the vortex size is on the order of the healing length around the resolution

limit of the imaging system, a brief 5 ms TOF was used to expand the vortex core size.
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Figure 7.4: Experimental implementation of half-toning and chopsticks: top image, in-situ
imaging of the BEC after using feedback, notice the quite smooth potentials. Bottom, imaging
vortices created with the chopsticks technique with 5ms time of flight.

7.2.1 Hard interface

Dipoles created in the halftoned potential were consistent in their nucleation and initial

position. Unfortunately, despite much experimentation with initial parameters and with the

feedforward technqiue described in Section. 5.2.2, it appears as though vortex dipoles do

not travel in straight lines in a half-toned potentials, as the dipole position vary immensely

at the same hold time. The reasons for this are unclear, however it may be due to minute

density fluctuations, on the order of the healing length. This would e↵ectively perturb the

vortices, making their motions stochastic 1. While it may be possible to create a smooth

potential using some mix of half-toning, feedback, it was decided to attempt to see Snell’s

law behaviour in a continuous linearly varying density, analogous to a continual changing

refractive index.

7.2.2 Linearly varying density

Using the side zeroing coils around the science cell, typically used to cancel stray magnetic

fields, we can shift the zero of the confining quadruple trap. This e↵ectively adds a linearly

changing magnetic field across the condensate, and as the atoms at in the |F = 1,mF = �1i

magnetically trappable state, they are subjected to a linear potential. The motion of dipoles

1In other experiments I have conducted, it appears as though half-toning can create bulk density waves

and can be used to induce excited azimuthal modes of a confining geometries reliably suggesting half-toning

is e↵ective on the order of 10µm
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through this changing background density is analogous to curved trajectories of photons

in a fibre optic cable. As expected the vortex paths are no longer straight, and due to

changing background density the separation of the dipole pair changes over the trajectory.

We observe the formation of Jones-Roberts solitons, and the separation between the vortices

increasing to the degree that their dynamics are dominated by their image vortices, under

certain conditions.

GPE simulations

Figure 7.5: Tracked Vortex Trajectories from a GPE simulation for the initial conditions a)
45� b) 90� c) 135� and d) 180�, with the direction of the applied magnetic field indicated with the
green arrow. Vortices travelling towards the arrow are travelling into a region of lower condensate
density. A more detailed picture of case b) is shown in Fig. 7.6

GPE simulations of the this system is almost identical to that of the step potential

system, but a linearly changing external potential is applied, rather than the step. The

initial angle of the chopsticks are changed as before and dipoles are released to freely evolve.

In these simulations changing the gradient of the linearly applied potential corresponds to

changing the strength of the magnetic field applied from the side zeroing coils. This means

the strength of the magnetic field, or linear potential, and the initial dipole position and

separation completely characterise the trajectories. While the magnetic field strength of the

simulations was not matched to the experiment, to find the qualitative behaviour of the sys-

tem, I applied a seemingly reasonable linear potential resulting in curved dipole trajectories.

Two interesting cases involve the dipoles being released at an angle of ✓ = 0� or ✓ = 180�
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Figure 7.6: Dipole trajectory travelling towards a high condensate density ✓ = 0�. Top a)
1000⌧ , b) 1340⌧ , c) 1500⌧ Middle: d) 1560⌧ , e) 1570⌧ , f) 1580⌧ , g) 1590⌧ , h) 1600⌧ . Bottom: i)
1800⌧ , j) 1900⌧ , k) 1970⌧ . We first observe the dipole that condenses into a Jones-Roberts soliton
(JRS) a)-c). The JRS then reflects o↵ the boundary d)-h), then re separates into a dipole pair in
the low density area of the condensate i)-k). The nature of the dipoles can clearly can seen at the
boundary, where the vortices pair up with their images, while the JRS reflects. This is a definitive
indication of a JRS, and may be observable experimentally.

to the linear gradient. In the first case, with ✓ = 0, the dipole is moving from an area of

low background density to high background density, this means the vortices can merge into

Jones-Roberts soliton (JRS), where the topological defects of the vortices annihilate, create

a ⇡ phase jump over a soliton. This then travels at the Bogoliuabov speed of sound, and

reflects o↵ the boundary, a completely di↵erent behaviour to a dipole, which when approach-

ing a hardwall will separate and the vortices will pair up with their images. The reflected

Jones-Roberts soliton then travels from an area of high density and low density and sepa-

rates back into a vortex anti-vortex pair, which separate as they pair with their images at
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Figure 7.7: Example vortex positions for the initial dipole angle ✓i = 90� various time steps
540⌧ ,1640⌧ ,2740⌧ , 3840⌧ , 4940⌧ for the case with marked vortex positions on the vortex trajectories.
Notice the curved vortex dipole trajectory, in stark contrast to the previous examples of straight
vortex trajectories.

the boundary. For a dipole travelling in the opposite direction ✓ = 180, from high density

to low density, the vorticex separation must grow. As the vortices move further apart their

interaction with their image vortices begins to dominate and they curve back around form-

ing a closed orbit. These simulations have a high degree of symmetry and little noise, it is

unlikely to observe these exact behaviours for vortices and JRS in an experiment.

Initial angles other than ✓ = 0� or 180�, have curved trajectories. Dipole initially in low

condensate densities have a relatively constant separation and curve toward the area of low

density. Similarly the vortices are released at a ✓ = 90 angle to the linear gradient, curve

towards the area of low density, however the vortex separation quickly grows. For dipoles

starting in the high density region, the dipole separation becomes significant quickly and

their interaction becomes negligible in comparison to the image vortex e↵ects.
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Preliminary Experimental Data

During the collection of this data there as an intermittent fault where condensates would

not consistently load, and condensate number would vary significantly shot to shot. At

the time no cause could be identified, however, the BEC transfer coil failed a couple of

weeks later. It seems unusual for a coil to intermittently fail, however it would explain the

behaviour of the experiment2. As such the condensate density from shot to shot could vary

significantly, changing the healing length and hence dimensions of the required simulation.

Experimentally this would imply that both the trajectories can vary shot to shot as well as

the speed of the dipole. Due to this limitation this data is only preliminary and a quantitative

comparison between the data and numerical models is not attempted with only a qualitative

comparison. However, we do observe qualitative agreement between experimental data and

the GPE simulations.

Figure 7.8: Dipole initial created at angle ✓ = 180. Top left, marked vortex positions from the
experiment with a drawn arrow indicating vortex direction. The marker colour indicates the vortex
observation time. Top right, a similar GPE simulation to provide a comparison. Bottom images
taken at a) 0s, b) 100ms, c) 200ms, and d) 300ms.Images taken at a) 0s, b) 100ms, c) 200ms, and
d) 300ms.

2This failure was somewhat expected as the coils are immersed in water to cool them. The coils corrode

and must be replaced periodically. They fail due to the high stress placed on them from the high magnetic

fields, and deform in shape.
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Figure 7.9: Dipole initial created at angle ✓ = 225. Top left, marked vortex positions from
the experiment with a drawn arrow indicating vortex direction. The marker colour indicates the
vortex observation time. Top right, a similar GPE simulation to provide a comparison. Bottom
images taken at a) 0s, b) 100ms, c) 200ms, and d) 300ms.

Preliminary experimental data is presented in Fig. 7.8 and Fig. 7.9, next to example

dipole trajectories found with a GPE simulation. While this qualitatively matches the vor-

tex trajectories, future experimental data with hopefully permit a direct comparison with

simulations. It should also be possible to create a inhomogeneous point vortex model for

this system, thereby expanding our knowledge of point vortex physics.



8
Conclusion

8.1 Summary

The UQ BEC apparatus is ideal for performing experiments on a two dimensional superflu-

ids. In particular Gauthier and Neely [13, 13, 32] have demonstrated the versatility of this

apparatus, using the digital micromirror device (DMD), to create almost arbitrary dynamic

potentials, providing a high degree of control over the condensate.

We first investigate a system of single signed vortices, the chiral system, which are well

described by the point vortex model. Lars Onsager used the point vortex model to predict

vortex clustering at high energies, described by negative thermodynamic temperatures [12].

Furthermore this system has symmetric and asymmetric equilibrium states, with a symmetry

breaking transition that can only occur at negative temperatures, a result previously found
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by Smith and O’Neil [19]. We have experimentally created these symmetric and asymmetric

states as well as a non-equilibrium initial state. We have observed both the stability of the

the equilibrium states as well as the relaxation of a non-equilibrium state into a asymmetric

state. Using a variety of modelling techniques we observe that the nucleation and dynamics

of the vortices are qualitatively well described by the Gross-Pitaevskii equation. We also

observe excellent agreement between the data, a dynamic point vortex model, and with a

Monte-Carlo point vortex simulation. This shows demonstrates vortices in the experiment

are in an equilibrium. Whilst the vortices are in equilibrium they form a subsystem of the

condensate which is highly non-equilibrium. The results presented in this thesis, agree with

Smith and O’Neil, with minor di↵erences owing the the finite vortex number.

Secondly we also use a method pioneered by Samson et al [54], to create on-demand pairs

of vortices and anti-vortices. This is a highly versatile method that we use to explore the

motion of vortex dipoles in an inhomogeneous condensate. Due to the conservation of energy

and linear momentum of the vortices, the dipoles should obey a Snell’s law relation with

reflection and refraction across a step change in condensate density [29]. We simulate an

experimentally realistic scheme using “chopsticks” and find excellent agreement with Snell’s

law. Due to experimental limitations, we instead investigate the behaviour of dipoles in con-

densate with linearly varying density. Preliminary experimental data qualitatively agrees

well with GPE simulations.

8.2 Outlook

While we understand much of the behaviour of the chiral system, there remain some open

questions. It is not known why the Brownian motion term in the point vortex model leads

to such good agreement with the experimental data. Potentially a projected or stochastic

projected GPE simulation would provide insight. We could perform many simulations using

imprinted initial vortices, matching experimental data. We are yet to make comparisons to

mean-field theory, a semi-analytic theory that should in principle completely characterise the

system in the large vortex limit. This comparison would be interesting due to finite number
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of vortices in the experiment. We have not experimentally explored the behaviour of the

vortex ring states that Smith and O’Neil discuss, which would completely characterise the

parameter space.

As of the time of submitting this thesis, the experiment is operational. The dipole Snell’s

law experiments should be performed soon. Depending on the quality of data, quantitative

comparisons to GPE and an inhomogeneous point vortex model could be made. Using the

varying condensate density, it should also be possible to create on-demand Jones-Roberts

solitons, and potentially create “sound lenses”. More generally, using the versatility of the

chopsticks dipole creation process, it should be possible to create stable initial vortex con-

figurations, such as a steady two vortex state and vortex lattices, and explore the onset of

chaos experimentally. It is also possible to explore the dynamics of soliton-soliton, soliton-

dipole, and dipole-dipole interactions. The content of this thesis demonstrates the potential

for conducting a wide range of vortex experiments, with good agreement to theory. The

experiment is a playground for the exploration of vortex physics.
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A
Computational solving the GPE

XMDS2

XMDS2 is a fast general di↵erential equation initial value problem solver that can be used to

numerically solve coupled, partial and stochastic in arbitrary dimensions [67]. XMDS2 allows

a problem to be expressed in XML format and automatically outputs a C++ simulation

written with fast algorithms that can be parallelised. It is used in a wide range of fields

from quantum many-body systems to ecology. Other programs and numerical techniques

could have been utilised such as writing a custom simulation in C using the Crank-Nicolson

method. However a numerical problem can be specified in XMDS2 in high level XML and

XMDS2 will output a simulation written in low level optimised C++ code, thus saving a

significant amount of time writing and debugging code while providing a high degree of

flexibility. This was ideal for simulating the BEC using a unitless 2D GPE.
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Unitless two dimensional GPE

In order to reduce computational complexity it is useful to perform simulations in unitless

dimensions. Here we choose spatial units in terms of the healing length, and temporal units in

terms of the healing time. It is also often quite convenient to work in a frame that is evolving

in phase with the rate of the chemical potential by subtracting the chemical potential from

the potential. The presence or absence of the chemical potential in that expression has no

e↵ect on the dynamics and can be included or neglected as a matter of choice.
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Now simplifying and dividing by a factor ng
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Where I have re-expressed the potential in units of the chemical potential V 0
ext

(r0, t0) =

Vext(r0, t0)/ng. Now assuming that the wavefunction vertical is strongly trapped in a har-
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Finally in order to model phenomological damping e↵ects we add a �0 term to capture e↵ects

such as interactions with the thermal cloud
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XMDS2 utilises pseudo-spectral methods. This can cause problems when momenta in the

simulation are higher than the maximum momenta imposed by the finite lattice spacing

kmax = 1/2a where a is the grid spacing. This requires finer grid spacings for some simula-

tions. For the later “chopsticks” simulations only a (240 ⇥ 240) grid is required; however,

for the“paddle sweep” simulations to nucleate vortex clusters, higher momenta modes are

excited due to the relatively thin paddle widths and required grid sizes of (400 ⇥ 400). Al-

most hardwalled potentials are used with some smoothing to reduce computational time and

better simulate the experiment.

Detecting the vortex positions in simulations

It is possible to numerically detect the positions of point vortices and their sign by taking

the curl of the velocity. This is only non-zero when a vortex is present.
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Figure A.1: As the simulation outputs the phase and density of the wavefunction, it is possible
to numerically locate vortex positions by taking the curl of the velocity field r ⇥ r�. In our
unitless simulation this should evaluate to ±1 at vortex cores and 0 elsewhere. In order to account
for regions with very sparse density I have applied a mask, this requires a that the circulation is
around 1 and a local minimum.
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