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Abstract

Superfluids and superfluid turbulence are complex phenomena resulting from macroscopic
quantum effects. One application of Bose-Einstein condensation (BEC) research is the study
of superfluid behaviour including turbulence and transitions to turbulence. Classically, these
transitions are governed by instabilities and driven by viscosity. Recent computational work
predicts the possibility for BEC superfluid systems to support an analogue to a specific class
of classical instabilities, the Kelvin-Helmholtz (KH) instabilities. In a classical system, KH
instabilities are characterised by a rolling up of the shear layer between two fluids, flowing at
different velocities. In a BEC superfluid, the analogue for this interface is a line of quantised
vortices, and the roll up of this interface manifesting as a clustering of these vortices over
time. This thesis describes the realisation of the prior computational work into an experi-
mental setting, where quasi-2D, single component BEC superfluids were used to investigate
KH instabilities in a ring geometry.

Using a combination of atom cooling and trapping protocols, along with a digital micromirror
device allowed for the trapping of a BEC superfluid into a ring geometry which could then
be further subdivided into two concentric rings. These rings were then stirred to generate a
persistent current and, through the removal of the barrier between the rings, a line of like-
signed vortices was generated. This stirring process was optimised via the use of a Gaussian
process regression machine learning algorithm in order to efficiently and consistently control
vortex numbers at the superfluid boundary. Time-of-flight and Faraday imaging techniques
were then used to acquire relevant data. The KH instability was subsequently observed
in the superfluid system, indicated by a highly unstable shear layer which exhibited decay
within the first 30 ms of free evolution. Via a vortex detection algorithm, the positions of
the vortices could be found for each image taken and by taking multiple images over varying
times, the dynamics of the vortices could be analysed statistically.

The cluster dynamics analysis was attempted for 20 and 30 vortices in a ring. These condi-
tions were equivalent to using different starting shear velocities. The results in the both cases
presented a decrease in the number of clusters present over time, while the average number
of vortices per cluster increased which was indicative of progressive clustering characteristic
decaying turbulence in classical 2D fluids. The time scales for this clustering effect were
observed to be comparable to classical turbulence decay rates. In addition to observing the
KH instability, the experiment demonstrated the generation of quantum turbulence emerging
from the instability and was able to establish similarities in decaying turbulence between 2D
quantum and classical liquids through flow field simulations derived from vortex positions.
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To our knowledge, this project was the first instance of the experimental observation of KH
instabilities in dilute gas BECs, and the first observation of the microscopic dynamics of the
KH instability in superfluids.
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1
Introduction

Superfluids differ greatly from their classical fluid counterparts in properties and behaviour,
making them an intriguing phenomenon to study. Superfluid flow is characterised via a lack
of viscosity emerging for a material system beyond a phase transition as a result of cooling
below a critical temperature [5, 12]. The lack of viscosity means that a superfluid shows very
different behaviour from classical fluidity, where viscosity greatly influences the properties
of a system [12]. Yet despite these differences, there exists similarity between superfluid and
classical fluid behaviour in certain situations. It is in this region of overlap that one may
study complex classical-like behaviour in superfluid systems such as turbulence [5].

There is considerable motivation for undertaking such an investigation. Namely, stronger
connections between superfluids and their classical counterparts can be formed. It becomes
possible to derive analogs between the quantum and classical turbulent phenomena through
which the mechanisms by which superfluid turbulence arises can be understood. The de-
velopment of understanding superfluid turbulence is important since the lack of viscosity in
a superfluid introduces the question of how superfluid systems undergo transitions to tur-
bulence. Classically, transitions to turbulence are driven by viscosity and thus superfluid
turbulence must be driven by alternative processes [5, 12]. In studying these superfluid pro-
cesses, the analog between superfluidity and classical fluidity may be further developed and
by extension the understanding of classical turbulence may be improved. Indeed, there is
growing evidence and support for the idea that larger scale superfluid turbulence is similar
to classical turbulence [13]. In order to truly develop and understand these aforementioned
connections, rigorous experimental work must be employed on superfluid transitions to tur-
bulence.

Bose-Einstein condensate (BEC) research has already begun investigating superfluidity. BEC
superfluid systems themselves offer a high level of versatility and control over experimental
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2 Introduction

parameters, such as atom density and atom interaction strength which are vital for investi-
gations into superfluidity [5, 7, 12, 14–16]. Additionally, recently developed methods such
as spatial light modulators (SLMs) allow for almost arbitrary manipulation of the BEC su-
perfluid shape and flow velocity [5, 7, 14–16] allowing for a vast range of flow configurations
to be investigated experimentally. This high level of experimental control means that BEC
superfluid experiments are highly replicable and offer the ideal medium for superfluid tur-
bulence studies [5, 7, 14–16].

Some phenomena of interest related to superfluid turbulence are the dynamical phenom-
ena driving transitions to turbulence. The simplest of all such mechanisms is that of the
Kelvin-Helmholtz (KH) instability which describes a “rolling-up” effect of the interface be-
tween two parallel flowing streams [5]. Recent computational work by Baggaley & Parker [5]
has predicted an analog of KH instabilities in 2D single component1 BEC superfluid systems
where the interface between two streams was no longer a continuum but a line of quantised
vortices. Their work showed that this line of vortices was unstable and would cluster at
varying length-scales to mirror the rolling up of a classical boundary [5]. Baggaley & Parker
also suggested the possibility for expansion into experimental work by studying the KH in-
stability in a ring geometry. This project adapted the prior work by Baggaley & Parker
into the experimental investigation of KH instabilities in a quasi-2D, ring-trapped, single
component BEC superfluid. The motivation was to attempt the experimental observation
of KH instabilities in a pure BEC superfluid such that experimentally derived results could
be used to draw connections between classical and superfluid turbulence. In the experiment,
KH instabilities were observed as predicted by Baggaley & Parker. The dynamics of the
resulting vortices were analysed to better understand superfluid transitions to turbulence.
The outcomes of the project are presented in this paper.

The structure of this thesis is such that both experts and non-experts may appreciate the
work and results. A detailed background into BECs and superfluidity is thus presented in
Section 2 to lay the groundwork for understanding and discussing BEC superfluid dynam-
ics. There is additional background on instabilities in Section 3, where the major focus is
on KH instabilities. Following the background, there is an explanation of the experimental
techniques used in this project in Section 4. Finally, the results of the project are presented
in Section 5, where a detailed discussion on the accuracy, significance and outlook for the
major results is also given.

1“Single-component” referring to the use of the same species and states of atoms/bosons as opposed to
“multi-component” where multiple species of different atoms/bosons or different states of the same atoms/-
bosons are used [7].



2
Bose-Einstein Condensates

This chapter focuses on the relevant background required to understand BECs, as well as
their connection to superfluids. A formal definition of BECs is given in the context of Bose
gases. The approximation of the many-body wavefunction of a BEC system as a macroscopic
wavefunction is described and the Gross-Pitaevskii equation (GPE) which defines the evolu-
tion of the macroscopic wavefunction for a BEC system is also considered. There is then an
extension of the theory to superfluidity via the Madelung transformation of the macroscopic
wavefunction. This transformation essentially allows the previously discussed theory to be
viewed in a format more readily compatible with familiar fluid dynamics theory. In making
this connection to BEC superfluids, some similar behaviour to classical fluid dynamics will
be observed, as well as some behaviour unique to superfluids. As a result of all prior the
discussion, it will be shown that BEC superfluids can support poles of quantised circula-
tion which are referred to as vortices. Understanding the formation and dynamics of these
vortices is critical for understanding their role in observing and measuring KH instabilities.

2.1 Formal defintion of BECs

Formally, one defines a BEC as a Bose gas1 which has undergone a phase transition under
a critical temperature [7, 18]. The resulting phase is characterised by the occupation of
the macroscopic ground state of the system by all the bosons in the ensemble, at absolute
zero temperature [7, 18, 19]. In physically realisable systems relevant to BEC experiments,
not all the bosons achieve this condensation but a large proportion of the ensemble do
satisfy the condition [19]. Theoretically, the dynamics of the resulting condensate is com-
pletely solvable via the many-body Schroedinger equation, via a many-body wavefunction
[7, 19]. The many-body wavefunction completely captures the required information about

1Collection of particles, obeying Bose-Einstein statistics [7, 17]
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the BEC system via its probability density [7, 13, 19]. Unfortunately, making use of this
many-body theory is impractical despite its relative conceptual simplicity. Computationally,
use of many-body wavefunctions with experimentally consistent atom numbers is expensive,
and generally many-body theory is mathematically complicated to a degree that would not
be useful in generating predictions about these BEC systems [7, 13]. Instead, a pragmatic
approach is required, where the many-body problem is reduced to a single-body problem via
approximation.

The mechanics of the ensemble of bosons can be approximated in a semi-classical envi-
ronment via the macroscopic wavefunction, Ψ(r, t), where r is an arbitrary spatial position
vector and t is time. This macroscopic wavefunction describes the local boson number den-
sity in a BEC [19]. At this point, to avoid confusion, there will be no longer distinction
between bosons and atoms due to the fact that in experiment the atoms used to create the
BEC are bosons (87Rb atoms). Thus, the probability density of the macroscopic wavefunc-
tion is said to be the local atom number density; |Ψ(r, t)|2 = n(r, t).

Strictly speaking, Ψ(r, t) is a mean-field approximation to the many-body wavefunction that
accurately describes the system given some approximations, effectively simplifying the BEC
wavefunction to an N-particle single wavefunction [19]. The macroscopic approximation is
valid given that the majority of the atoms are in the ground state (a condition already sat-
isfied by the definition of BECs) and given that the interaction between atoms is weak [7, 19].

Yet, as an approximation the macroscopic wavefunction will still fail to account for features
present in the full many-body theory. For example, Ψ(r, t) cannot describe the dynamics
of atoms which fail to condense into the ground state [7]. Even some quantum effects such
as tunnelling do not manifest under Ψ(r, t) since the macroscopic approximation is semi-
classical [7]. Fortunately, the features relevant to the work presented here are still present
in Ψ(r, t); namely quantum vortices which are discussed in Section 2.3. To study these rele-
vant features, the dynamics of the system must be considered. It can be shown that Ψ(r, t)
evolves according to the Gross-Pitaevskii equation [7, 13, 19]:

i~
∂Ψ(r, t)

∂t
=

[
− ~2

2m
∇2

r + V (r, t) + g |Ψ(r, t)|2
]

Ψ(r, t), (2.1)

where m is the mass of the atoms in the system2, ∇2
r is the Laplacian (yet to be defined in

a specific coordinate system), V (r, t) is the external potential acting on the system and g
is the interaction strength parameter which introduces non-linearity to the dynamics of the
system. Generally the interaction parameter is defined in terms of the mass m and scattering
length3 a by [20]:

g =
4π~2a
m

.

2More generally there would be a summation over varying masses in the kinetic energy term in Eq. (2.1)
[19]. Here only single-component BECs are considered and so this mass is the same for all constituent
particles and the summation is omitted.

3Alternatively a is defined to be the scattering cross-section for a process interacting via spherical waves[7].
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With this interaction parameter, it is possible to quantify whether interactions are considered
weak in a BEC via the relation between scattering length and atom number density n = |Ψ|2
as defined previously [20]:

na3 � 1. (2.2)

In the context of the typical experimental BEC, the scattering length in on the order of
nanometers, so a3 ∼ 10−26 cubic centimeters, while atom number density tends to be on the
order of at most 1015 atoms per cubic centimeter [20] and so the condition requiring weak
interaction is certainly satisfied. This means that using the macroscopic wavefunction to
theoretically predict experimental outcomes is valid.

If g = 0, i.e. the non-interacting case, the GPE reduces to the familiar Schroedinger equation
with the bulk of the atoms behaving as a single particle or matter wave [7]. On the other
hand, if g > 0 the interactions are repulsive whereas for g < 0 the interactions are attractive
[7, 13, 19]. This project operates exclusively in the regime of repulsive interactions. From
Eq. (2.1) it is clear that weak interactions between the atoms in a BEC result in non-linear
effects manifesting in the system dynamics [7].

These dynamics are generally studied via imaginary time-evolution, making the replace-
ment t→ −it in Ψ(r, t) before considering evolution [21]. Imaginary time-evolution is useful
in quantum systems to find ground state wavefunctions [21]. This is possible via the applica-
tion of a ground state ansatz which is then evolved in imaginary time to find the ground state
wavefunction [7, 21]. A common ansatz choice is a wavefunction found under the Thomas-
Fermi approximation; where in the ground state the kinetic energy of the system is said to be
negligible relative to the interaction energy [7, 22]. This approximation is most useful if one
applies separation of variables to Eq. (2.1) in order to acquire the time-independent GPE.

Specifically, separation of variables proposes solutions of the form Ψ(r, t) = e−
iµt
~ ψ(r) where

µ is the chemical potential4 [7, 19]. Additionally assuming a time-independent potential
V (r, t)→ V (r), it is possible to write the time-independent GPE as follows [7, 19]:

µψ(r) =

[
− ~2

2m
∇2

r + V (r) + g|ψ(r)|2
]
ψ(r). (2.3)

Under the Thomas-Fermi approximation, the first term (kinetic energy) in the brackets of
Eq. (2.2) can be neglected, then solving for |ψ(r)|2 yields [7, 19, 22]:

µ = V (r) + g|ψ(r)|2, (2.4)

|ψ(r)|2 =
µ− V (r)

g
. (2.5)

Of course, this probability density of the spatial macroscopic wavefunction is only sensible
given it permits only positive values (between 0 and 1 assuming correct normalisation), and

4Defined in a familiar way in statistical mechanics as the rate of change of system energy with respect to
atom/particle number, ∂E

∂N [7]
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thus the Thomas-Fermi approximation can be reduced to the condition [7, 19]:

|ψ(r)|2 =

{
µ−V (r)

g
, for µ ≥ V (r)

0, otherwise.
(2.6)

Eq. (2.6) illustrates the ground state dependence on the external potential but also illus-
trates implicitly how the atom number density of the BEC system will generally follow the
potential [7]. This last observation is clear when one recalls that the probability density of
the macroscopic wavefunction describes the local atom number density. Thus, the shape of
the BEC can be altered by dynamically varying the ground state via the external potential,
which is exclusively used in the experiment (see Section 4.2) [23]. With the Thomas-Fermi
approximation and its implications understood, the fundamental background of BEC theory
relevant to the work of this project is concluded. However there is still a need to connect
this presented theory to superfluidity.

2.2 Connecting BECs to Superfluids

The GPE itself was first derived in the context of superfluidity (specifically superfluid He-
lium) [7, 18] and thus extension of BEC theory to BEC superfluidity is almost trivial. Indeed,
the GPE may be rewritten in the so-called “hydrodynamic form” [7, 19] via a transforma-
tion of the macroscopic wavefunction. The specific transformation used is referred to as the
Madelung transformation and its action on Ψ(r, t) is to rewrite the wavefunction in polar
form depending only on local atom number density n(r, t) and local quantum phase φ(r, t):

Ψ(r, t)→
√
n(r, t)eiφ(r,t). (2.7)

An alternative description of the Madelung transformation is that, in the mean-field, it
equates the macroscopic wavefunction to the complex order parameter which phenomeno-
logically describes Bose-Einstein condensation as a phase transition under Landau theory
[20, 24]. Under this transformation it is immediately clear that the probability density of
the macroscopic wavefunction gives the local atom number density [7]. The phase of a com-
plex order parameter in Landau theory is also referred to as the degeneracy parameter [24].
This is due to the fact that thermodynamic potentials5 do not depend on the phase and
so it is possible for a superfluid to have varying degeneracy parameters while having the
same thermodynamic potential (hence degeneracy) [24]. Therefore, one usually defines the
phase of the macroscopic wavefunction/order parameter modulo 2π so that degeneracy in a
thermodynamic setting is lifted and the single-valuedness of the wavefunction is preserved
[20, 24]. In the case of Eq. (2.7) however, single-valuedness can be preserved via restricting
the change in phase around any closed loop to be an integer multiple of 2π. Overall, via
Landau theory and the Madelung transformation, the connection between BECs and super-
fluidity is made more obvious.

5There are 4 quantities referred to as the thermodynamic potentials; internal energy, Helmholtz free
energy, Gibbs free energy and enthalpy [25]
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By substituting the Madelung transformation into the GPE, Eq. (2.1), one may consider
the resulting real and imaginary components separately. The resulting equations [7, 20]:

∂n(r, t)

∂t
= −∇ ·

(
n(r, t)

~
m
∇φ(r, t)

)
, (2.8)

~
∂φ(r, t)

∂t
= −

(
1

2
m
[
~∇φ(r, t)

]2
+ V (r, t) + gn(r, t)− ~2

2m
√
n(r, t)

∇2
r

(√
n(r, t)

))
, (2.9)

resemble the classical hydrodynamics equations, Eq. (2.8) arises from the imaginary com-
ponent of the GPE and is the familiar equation of mass continuity which ensures local mass
conservation in the fluid (i.e. compressibility) [26, 27]. Eq. (2.9) arises from the real com-
ponent of the GPE and is analogous to the Bernoulli equation or energy conservation for
an inviscid fluid [7, 20, 27]. Thus, there are already indications that a BEC is a superfluid
system inherently, since the BEC hydrodynamics equations lack viscosity drag terms. Below,
proof that a BEC is a superfluid system will be made mathematically rigorous via compu-
tation of the vorticity of a BEC.

Eqns. (2.8) & (2.9) also give merit to the concept of overlap between classical and superfluid
dynamics by the emergence of almost identical hydrodynamics equations [7]. Of course, as
expected there are some discrepancies. One example is the final term in the brackets of Eq.
(2.9). This term is referred to as the quantum pressure term and has no classical analog
[7, 27]. The quantum pressure term arises from compressibility of quantum fluids but it is
only relevant at the edges of the BEC and becomes negligible for large condensate fractions
[7, 20, 26, 27]. Ignoring the dissimilar factor of quantum pressure, a connection from these
BEC hydrodynamics equations to classical hydrodynamics is especially clear if one defines a
phase-velocity relationship as [7]:

v(r, t) =
~
m
∇φ(r, t), (2.10)

which can be derived in a variety of ways. The simplest is via arguing by comparison.
Specifically, comparing Eq. (2.8) and the classical mass continuity equation, it is immediately
obvious that a substitution of the form of Eq. (2.10) would exactly equate the two cases
[26, 27]. Alternatively, given the macroscopic wavefunction in the polar form of the Madelung
transformation, it is possible to evaluate the general formula for a wavefunction probability
current = n(r, t)v(r, t) [20]:

j(r, t) = i
~

2m
[Ψ(r, t)∇Ψ∗(r, t)−Ψ∗(r, t)∇Ψ(r, t)] . (2.11)

Then substitution of Eq. (2.7) into Eq. (2.11) gives Eq. (2.10). However one chooses
to derive the phase-velocity relationship. With some minor algebra and substitution one
acquires [20]:

∂n(r, t)

∂t
= −∇ · (n(r, t)v(r, t)), (2.12)

m
∂v(r, t)

∂t
= −∇

(
1

2
m
[
v(r, t)

]2
+ V (r, t) + gn(r, t)− ~2

2m
√
n(r, t)

∇2
r

(√
n(r, t)

))
, (2.13)
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thereby connecting Eq. (2.12) to mass continuity and Eq. (2.13) to the Bernoulli equation.
Continuing the analogy to classical fluids, one might consider vorticity ω = ∇ × v of a
BEC superfluid. In fact, it is immediately obvious that by the phase-velocity relationship,
vorticity must vanish everywhere due to vector calculus identities [7]:

ω(r, t) = ∇× v(r, t) =
~
m
∇×∇φ(r, t) = 0, ∀(r, t) ∈ R3 × R+. (2.14)

Thus, the BEC must behave as an inviscid, irrotational fluid, or superfluid, by definition [20].

The discussion has currently presented BEC hydrodynamics equations which lead to the un-
derstanding of a BEC system as a superfluid under the Madelung transformation. Through
simple arguments and algebra it was possible to introduce a connection between classical
fluidity and BEC superfluidity while simultaneously showing some differences between the
two. Overall, it is clear that using the Madelung transformation is sufficient to show that
BEC systems exhibit superfluidity with behaviours and dynamics dictated by a set of quan-
tum hydrodynamics equations which have strong classical analogs. This makes the quantum
hydrodynamics equations interesting objects to consider, but for the investigation under-
taken within the project, it is actually the phase-velocity relationship in Eq. (2.10) and the
vorticity of the BEC superfluid in Eq. (2.14) that are more relevant. Using these relations,
it is possible to derive the conditions for vortices to be supported in the BEC superfluid.

2.3 Quantum Vortices

It is important to understand vortices in a BEC superfluid due to their close relation to KH
instabilities as is discussed in Section 3. The fact that BEC superfluids are irrotational leads
to the definition of these vortices. Specifically, it is known that the curl of the gradient of
a scalar field must be zero as imposed in Eq. (2.14) [7]. Thus, by analogy to a classical
fluid, the BEC superfluid must be irrotational. In classical fluids, it is common to consider
irrotational systems for simplicity. Due to restrictions placed on quantum systems such
as the single-valuedness of the wavefunction, irrotation of the velocity field results in some
interesting implications (as will become clear below). Firstly, irrotation suggests that the
circulation around any simply-connected region6 vanishes, which is easily seen by computing
circulation ΓSC around an arbitrary closed curve C encompassing a simple-connected S region
via Stokes theorem:

ΓSC =

∮
C
v(r, t) · dl =

∫
S
∇× v(r, t) · dS =

∫
S
ω(r, t) · dS = 0.

Yet there is a reason that the discussion has been restricted to simply-connected regions so
far; Eq. (2.10) is only valid if ∇φ(r, t) is well defined, such as in simply-connected regions
where there are no discontinuities in phase or atom number density [27]. At points where

6Simply-connected is informally defined as a domain where any closed curve within can be shrunk con-
tinuously to a single point within the original domain [28]. What this really means is that the space does
not contain any “holes”.
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the wavefunction vanishes, i.e. no atom density points, the phase is not well-defined and so
it is possible to support circulation in a BEC if the region bound by the circulation contour
contains a pole. Computing circulation Γ around such a multiple-connected region D using
a contour R yields [7, 20, 27]:

Γ =

∮
R

v(r, t) · dl =
~
m

∮
R
∇φ(r, t) · dl =

~
m

∆φ(r, t)
∣∣∣
R
, (2.15)

where the last equality is made via the fundamantal theorem of calculus for line integrals and
∆φ(r, t)|R is the change of phase around the closed contourR. Recalling however, that single-
valuedness is imposed on the macroscopic wavefunction, it is required that ∆φ(r, t)|R = 2πj
for some integer j [7, 27]. Thus, the circulation around any region containing a pole in the
macroscopic wavefunction of the BEC superfluid is quantised to:

Γ =
2π~
m

j, j ∈ Z. (2.16)

Thus, in a BEC superfluid there can persist poles in the atom number density profile with
quantised circulation. These poles are defined as quantum vortices [7, 20, 27]. The number
j in the quantised vortex circulation is referred to as the winding number or charge of the
vortex [7]. Using Eq. (2.15) and (2.16) together, allows for one to work backwards in order
to find the vorticity of a quantum vortex [7]:

2π~
m

j =

∮
R

v(r, t) · dl =

∫
D
∇× v(r, t) · dS =

∫
D
ω(r, t) · dS. (2.17)

For sake of generality it can be assumed that the pole in region D is located at position R
at time T . Restricting the BEC superfluid to 2D would simplify solving for the vorticity
since the curl of the velocity field must be oriented perpendicular to the 2D plane of the
system, say along axis ẑ [7, 27]. This 2D assumption is quite valid and relevant since in
the experiment the BEC superfluid is confined in a quasi-2D ring geometry as described in
Section 4. Nonetheless, under these conditions two delta-functions for position and time
will suffice to solve the integral in the desired manner. This is because the only point that
can have non-zero vorticity is at the vortex core/pole where ∇φ(r, t) is ill-defined. So the
resulting vorticity profile is localised to the core of the vortex by [7]:

ω(r, t) =
2π~
m

jδ(3)(r−R)δ(t− T ). (2.18)

Such a system of vortices are referred to as point-vortices as all the charge and vorticity
is localised to their cores [7, 29]. In this case, vortices in a BEC superfluid should have
dynamics governed by the point vortex model [7, 29, 30] where the velocity of some vortex
labelled l is vl and is related to the gradient in the phase induced at its position rl by all
other vortices in the system [7]:

vl =
~
m

∑
k 6=l

∇φk
∣∣
r=rl

. (2.19)

The fact that the dynamics of any vortex in a BEC superfluid is influenced by velocity
flow induced by all other vortices can lead to highly complex behaviour [7]. Such complex
vortex dynamics is precisely why vortices are closely related to superfluid turbulence, and
by extension superfluid instabilities as is discussed in Section 3.
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3
Instabilities in Fluid Systems

This chapter discusses fluid instabilities in both a classical and superfluid setting. The goal is
to motivate the study of KH instabilities in this project while fostering enough understanding
about the phenomema to appreciate their importance in a more general sense. First there
is a discussion on the classical definition of an instability with some brief examples given.
The focus here however is on the classical KH instability which serves as the analog for the
transitions to turbulence in the BEC superfluids investigated experimentally. In discussing
instabilities in this classical setting, their importance in fields such as engineering, mete-
orology and even astrophysics is introduced. Following this overview, an extension of the
classical KH instability to 2D single-component BEC superfluids is discussed. Specifically,
experimental investigation of the superfluid KH instability is motivated through prior com-
putational work by Baggaley & Parker [5]. This work predicted a transition to turbulence
in BEC superfluids analogous to the classical KH instability. Finally, extension of the work
by Baggaley & Parker into an experimental BEC system is also discussed abstractly, leading
into Section 4 where experimental implementation is discussed in detail.

3.1 Understanding Classical Instabilities

Instabilities in classical viscous fluids govern transitions from laminar to turbulent flow [3, 5,
31]. Turbulence is a non-linear phenomenon, typically arising from a perturbation in a fluid
system [32]. Under such a perturbation one observes the emergence of some quasi-periodic
structure or pattern in the fluid system, which over time cascades into a more chaotic and
larger structure eventually transitioning the fluid flow towards fully developed turbulence
[1, 32]. The mechanism by which the structure forms and evolves under a perturbation is
defined as the instability since it dictates how turbulence will emerge from seemingly stable
laminar flow [32]. It is possible to classify instabilities via the phenomena that drive them,
typically flow or buoyancy [32, 33]. This can be seen via a simple argument starting with a

11
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2D classical, stratified1 fluid. Under a perturbed Navier-Stokes equation it can be seen that
the vorticity of the fluid will actually vary over time (indicating an instability) [32]. The
exact evolution of vorticity ω is given according to the density of the fluid ρ, the pressure
in the system P , the initial stable fluid velocity U = (Ux, Uy, Uz) and the perturbation
characterised by a velocity u = (ux, uy, uz) by the material derivative [32]:

Dω

Dt
=

1

ρ2
∇(ρ2)×∇P +

∂Ux
∂y

∂ux
∂x

. (3.1)

The first term in Eq. (3.1) highlights that both a density or pressure gradient in a system
can result in an instability. Such instabilities are buoyancy driven [32]. Alternatively, an
instability can be introduced via a velocity gradient and this is referred to as a flow-driven
instability [32]. In both cases however, typically one can relate these driving mechanisms to
viscosity in classical systems [1, 5]. That is to say, while the introduction of an instability
might not directly require viscosity, it is not the presence of an instability that drives tran-
sitions to turbulence. The true general drive towards turbulence is the cascading effect of
the emergent structure arising from the vorticity introduced via an instability [5, 32].

Figure 3.1: Schematics of different 2D flow patterns emerging under an RT instability where
the system is accelerated vertically upward (a-h) or radially inward (i). Shaded regions indicate a
higher density (heavy) fluid and unshaded regions represent a lower density (light) fluid. Different
patterns result from different initial equilibria used. (a) Initial horizontal equilibrium between
fluids. (b) Same initial horizontal equilibrium with larger upward acceleration. (c) Initial spherical
equilibrium with lighter fluid in the sphere. (d-g) Falling heavy fluid (varying upward acceleration).
(h) Complex flow due to mixing between fluids. (i) Spherical shell of higher density accelerated
inwards radially (origin bottom left of diagram). Figure taken from Ref. [1].

1Stratified fluids are fluids with some density change along an a spatial axis, typically taken to be the
vertical direction [34]. This density variation can be a gradient or discrete change [32, 34]. Note that constant
density configurations can be considered as a special case of stratified fluids where the density change is zero.
In this case, single-component systems are stratified.
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This cascade is viscosity driven in classical fluids and therefore, instability induced transi-
tions to turbulence in classical fluids require viscosity [1, 5, 32, 33].

Eq. (3.1) is derived in the context of general 3D classical fluids, but here the subsequent
discussion is limited to 2D systems exclusively. These systems decrease the complexity of tur-
bulent phenomena and are directly related to the work presented here. While 2D Buoyancy-
driven instabilties are not investigated in this project, they are necessary for consideration
in systems with multiple fluid densities. Possible extensions of the work described here could
implement multi-component superfluids with the aim of investigating buoyancy-driven in-
stabilities. For completeness, they are worth a brief discussion. Most buoyancy-driven
instabilities can be understood from the Rayleigh-Taylor (RT) instability. This instability is
classified by the motion of a denisty varying fluids via a pressure gradient [1, 32]. This occurs
naturally in the atmosphere of the Earth since there are a variety of different density gases
being accelerated through a gravitational potential [32], making the study of Rayleigh-Taylor
instabilities vital in the fields of meteorology and aviation where an emergence of turbulence
shapes the conditions for weather [12, 32]. While turbulent behaviour is generally chaotic
and difficult to describe it is possible to observe some common features in RT instabilities
during the transition to turbulence. Examples are shown in Fig. 3.1 as schematics of typical
fluid profiles in 2D systems.

Some common features of RT instabilities include sinusoidal interface profiles between two
fluids and “needles” forming due to the motion of a more dense fluid through another [1].
Additionally, features such as Fig. 3.1 (e-f) emerge due to the presence of a velocity gradi-
ent/shear and not purely from buoyancy effects [1]. Such profiles are expected in regimes
where the buoyancy terms of Eq. (3.1) are larger than the flow terms but not so large as to
dominate the instability [1].

Figure 3.2: Experimental observation of turbulence induced via a RT instability between a
light isopropyl alcohol fluid-flim and a heavy lithium polytungstate salt aqueous solution film.
Acceleration is driven downwards stronger than gravity to accentuate features typical in RT induced
turbulence in the atmosphere. Results taken from Ref. [2].
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The transition to turbulence via RT instabilities have been observed experimentally in vari-
ous work such as that of Roberts [2] where two fluids are held in equilibrium with a horizontal
interface and small perturbations are induced via imperfect acceleration downwards greater
than gravity [32]. Doing so allows for one to observe atmospheric-like turbulence phenomena
only accentuated as shown in Fig. 3.2 [2]. In the figure there is a very clear emergence of
both the sinusoidal and needle profiles at varying length-scales. When combined with the
viscosity of the fluids resulted in a gradual transition into turbulence via the aforementioned
cascading effect of the structure. Such processes occur constantly within a variety of fluid
systems, particularly in fields related to atmospheric conditions, which highlights the impor-
tance of instabilities in general.

The investigation in this project is the KH instability, which falls under 2D flow-driven
instabilities. Similar to how RT instabilities fundamentally explain buoyancy-driven insta-
bilities, the KH instability is the most fundamental velocity shear-driven instability as it
concerns itself only with describing the behaviour of a velocity shear layer between two par-
allel flowing fluid streams [3, 5]. As such a fundamental instability, the prevalence of KH
instabilities in physical systems exceeds even that of the buoyancy-driven instabilities [32].
It possible to observe the dramatic effects of KH instabilities in atmospheric events [32].
However, they are also important wherever fluid flow is present. This makes KH instabilities
fundamentally important not only to meteorology and aviation, but to general engineering
and even astrophysics [12]. This can be made more obvious by visualising the emergence
of a KH instability in a velocity shear layer via the transition to turbulence of the fluid
such as in Fig. 3.3. Here there is a “rolling up” effect of the interface over time due to the
difference in velocity between the two fluids. Due to viscosity, this rolling up effect occurs
over a range of length scales, resulting from perturbations to the shear layer, which form
coherent, large-scale structures in 2D after long times (see Section 3.3) [4, 5]. This expo-

Figure 3.3: Illustration of a transition to turbulence driven bt a KH instability seeding per-
turbations in the shear layer of a 2D classical system. Here two arbitrary classical fluid streams
are indicated by different shading. The interface/boundary is indicated by the horizontal black
line separating the two streams. The arrows in each stream represent fluid velocity, which the
lengths of the lines indicating the magnitude. Each panel illustrates how the boundary evolves
over time, where time increases from left to right. Due to the relative difference in velocity be-
tween the streams, drag effects are incurred between the streams resulting in deformation of the
interface/boundary in a “rolling up” motion. Figure taken from Ref. [3].
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nential perturbation growth at the interface often leads to turbulence via destruction of the
laminar flow in both fluids [5]. Of course, transitions to turbulence in this manner require
large enough perturbations such that they are not suppressed by energy dissipation [4, 32].

The perturbations in the system are seeded into the interface via the KH instability [32].
KH instabilities can actually be simplified further into their most fundamental case; the
velocity shear between two streams of the same fluid [4, 5, 33]. In this case, all relative
differences in flow velocities between the streams will result in KH instability induced tran-
sitions to turbulence [5]. Due to this, it becomes clear exactly how critical studying KH
instabilities becomes in understanding classical turbulence since in many regards they are
the most fundamental instability inducing transitions to turbulence. This is the reason for
an abundance of literature focusing on simulating and understanding KH instability induced
transitions to turbulence, which is becoming a well researched phenomenon and is readily
visualised computationally, such as in Fig. 3.4. These simulations are performed by compu-
tational solving coupled partial-differential equations derived from the Euler equations for
fluids [4]. Viscosity is present in these simulations as well meaning that it is possible to

Figure 3.4: Simulation of KH instability induced turbulence in a two-fluid system (black and
white) of varying density in the subsonic regime (no shockwaves present) over time. Colour indicates
fluid density and the axes represnt unitless 2D space. (a) Emergence of a perturbations due to the
KH instability at early time t = 1 (unitless). (b) Observable transition to turbulence via KH
instabilities at later time t = 5. Results taken from Ref. [4].

observe transitions to turbulence given the presence of a KH instability [4]. Additionally,
the simulations are completed in a purely 2D square area, with periodic boundary condi-
tions around the entire area [4]. Since the focus of this investigation is on superfluid KH
instabilities the work behind the simulations will not be discussed in detail except to ex-
tract a better understanding of KH instabiltities and their role in generating fluid turbulence.
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From Fig. 3.4, the rolling up effect of the velocity shear on varying length-scales becomes ap-
parent even at early times. Fig. 3.4 (a) shows a typical decaying velocity shear layer between
the black and white regions due to a KH instabiltity. Comparison between earlier times,
with mostly laminar flow, and later times, when the system is dominated by turbulent flow,
illustrates the exponential growth in perturbations arising from the initial KH instability.
Initially there emerge many small classical vortices, due to the rolling up of the shear layer,
which coalesce into larger vortices. The effect then is that the total vortex number decreases
over time. This suggests that the shear layer can initially be thought of as a continuum of
infinitesimal classical vortices which coalesce in the inverse cascade manner such that the
effect is observable as the rolling up effect [35].

Indeed, classically one often computes a shear layer as a vortex sheet (or line of vortices
in 2D) comprised of point vortices (see Section 2.3), and it will be seen that this potentially
has physical meaning in the context of superfluids [35]. Perturbations in the shear layer
are introduced via the KH instability and gradually cause a decay of the layer to introduce
turbulence. Fig. 3.4 (b) does indicate the presence of turbulence in the system via the pres-
ences of large-scale patches of vorticity and complete roll up of the two shear layers beyond
recognition. Even so, there is still a well defined region of laminar flow in the high density
region (white). Fig. 3.4 actually shows the subsonic regime where the shear velocity is small
and no shockwave effects are present. Due to a lower velocity shear, there is a delay in the
onset of turbulent features due to the KH instability [4]. This is actually a common obser-
vation in KH instability induced transitions to turbulence since similar effects are predicted
in superfluid systems as discussed in Section 3.2.

Figure 3.5: Same classical simulation as Fig. 3.4 only with an increase in shear velocity by a
factor of 4. There exist shockwaves in this case from the extreme shear velocity. (a) Large-scale
emergence perturbations due to the KH instability. (b) Complete transition to turbulence driven
by the KH instability and shockwaves. Results taken from Ref. [4].
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This effect made more apparent when the shear velocity is increased between the fluids
such as in Fig. 3.5. Under these conditions, there is the presence of shockwaves since the
system is no longer subsonic [4]. Even so, there are clear indications in Fig. 3.5 (a) of the
rolling up effect on the boundary which is expected in the presence of a KH instability [4].
Even more convincingly is the final state of the fluid shown in Fig. 3.5 (b) where there has
been a clear transition to turbulence over the entire 2D area [4]. Additionally, the rolling
up effect at larger shear velocity values seems to be accentuated, resulting in larger vortices
forming faster. This is further justified by the faster onset of turbulence in Fig. 3.5 (b) where
only two large vortices dominate the space, with many smaller vortices scattered around.
Clearly, coalescence of vortices arising due to a KH instability characterise transitions to
turbulence in a classical fluid. This closely relates to the superfluid KH instability as is
discussed in Section 3.2 where quantum vortex clustering acts as the analog for classical
vortex coalescence.

To take this notion one step further, this similarity means that studying KH instabilities
in superfluid systems allows one to fundamentally connect superfluid turbulence to classical
turbulence by showing that the KH instability in superfluids can seed quantum turbulence.
This is particularly important since, by definition, superfluids have no viscosity. So a priori
it is not immediately evident that instability induced transitions to turbulence should even
be supported in superfluid environments [5]. Yet, computational work by Baggaley & Parker
strongly suggest the existence of a KH instability analog in BEC superfluids. An experimen-
tal investigation of KH instability induced transitions to turbulence in BEC superfluids is
therefore well motivated, in an attempt to further understand turbulence in general and the
connection between classical and superfluidity. Of course, this first requires understanding
of the superfluid KH instability.

3.2 The Kelvin-Helmholtz Instability in a Superfluid

Computational work by Baggaley & Parker in 2018 predicts KH instabilities in a single-
component BEC superfluid system [5]. This work served as the initial motivation for the
project undertaken here. Baggaley & Parker achieved these predictions through numerical
simulation of the BEC superfluid via its macroscopic wavefunction though the Madelung
transformation [Eq. (2.7)] and the GPE [Eq. (2.1)] in 2D (see Section 2). The Thomas-
Fermi approximation [Eq. (2.6)] was used to shape and configure the BEC superfluid as
shown in Fig. 3.6 (a) and 3.6 (b). Specifically, the external potential used in the simulation
was such that the atoms were trapped in two channels with equal population [5]. The
potential in the channels was chosen to follow a profile that is uniform horizontally and
varies vertically according to [5]:

V (y) = VBΘ

(
|y| − L

2

)
+ VG(t)e−

y2

σ2 , (3.2)

where Θ denotes the Heaviside step function and L = 60 was chosen to be the width of
both channels combined. VB is the potential barrier height outside of the channels which is
chosen to be extremely large so as to simulate a hard wall potential. VG is the barrier height



18 Instabilities in Fluid Systems

Figure 3.6: Example from Baggaley & Parker of a GPE simulation. Note that here spatial
coordinates are normalised by the healing length ξ = ~√

mµ . (a) Atom number density profile of the

macroscopic wavefunction at t = 0 (unitless time). (b) Quantum phase profile at t = 0, indicating
a velocity shear. (c-f) Density profiles at intermediate times 45 < 5 < 150. (g) Steady-state density
profile after a long holding time t = 600. (h) Phase profile at steady-state condition at t = 600.
Results taken from Ref. [5].

for the separation between the two channels which is time dependent since it will eventually
be removed. Finally, σ = 1.28 is just chosen for the width of the separation barrier which
follows a Guassian profile [5].

Additionally, the boundary conditions at x/ξ = ±1001 are chosen to be periodic to simulate
an infinite length channel [5]. This use of periodic boundary conditions makes experimental
adaptation of this work simple, since one may replicate periodic boundary conditions in a
ring trapped BEC [5]. In order to imprint a current into the channels, the phase-velocity
relationship [Eq (2.10)] was exploited by Baggaley & Parker through imposing a phase gra-
dient on the initial Thomas-Fermi groundstate2 [5]. As seen in Fig. 3.6 (b) the two channels
were given the same winding number of j = 1, but the phase gradient was directed in op-
posite directions [5]. This will induce (relatively slow) flow velocity in opposite directions
and so there is guaranteed to be a velocity shear of some form [5]. The barrier separating
the two channels was then removed according to the function VG(t) = max (0, 5− 0.1t) [5].
This meant that the barrier was not removed by spatially decreasing its size to zero but by
decreasing the size of the potential in the barrier region until the superfluids could freely
interact after t = 50.

In the example simulation shown in Fig. 3.6, one can see the creation of a velocity shear [5].
Yet, instead of a continuum shear layer as discussed in Section 3.1, the superfluid system
instead exhibits the emergence of two quantum vortices of the same charge. Over time it can
be seen that the atom number density and velocity field of the system becomes influenced by
the circulations of the two vortices (see Section 2.3) however there is no evidence of turbulent

1ξ = ~√
mµ is known as the healing length and it is a measure of the typical length scale over which the

BEC density will transition from zero to the average background density of the bulk superfluid [7].
2A global complex phase term would not effect the probability density under this approximation.
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behaviour due to the velocity shear [5]. Specifically, if a KH instability were to manifest,
there would be some analog of the inverse cascading effect in the vortex boundary such that
perturbations grew exponentially. Yet the vortex positions remain constant throughout the
t = 600 simulation time. This is because there are no perturbations to the shear layer,
driving transitions to turbulence, in this ideal superfluid system [5]. Thus, Fig. 3.6 shows
that there does exist an analog for the classical velocity shear in a BEC superfluid but there
is no indication of a KH instability in this shear layer[5].

However, it is possible to induce the required perturbations via the random noise seeded
into the potential. Baggaley & Parker do so via the addition of small white noise3 which
was meant to simulate experimental conditions where thermal fluctuations in the apparatus
would result in imperfect trapping of the superfluid [5]. The requirement of perturbations
to drive transitions to turbulence in the BEC superfluid system is not dissimilar to classical
fluid shear layers exhibiting unstable behaviour under the presence of noise. Additionally,
in order to better observe the dynamics of the vortices that result, a larger winding number
was induced on the initial phase of the channels. By increasing the winding in the channels,
the magnitude of their flow velocity is increased and so more vortices form at the velocity
shear layer [5]. Fig. 3.7 shows the outcome of the GPE simulation with the added noise and
an initial 40 vortices acting as the velocity shear layer [5]. The addition of perturbations

Figure 3.7: GPE simulation of KH induced transition to turbulence in a single-component BEC
superfluid system. All plots show the atom number density at some instance of time. Initially, a
winding number of 20 is imprinted on each channel resulting in the formation of 40 vortices. (a)
Formation of the vortex shear layer at t = 0. (b-e) Gradual clustering observed for 200 ≤ t ≤ 500
which mimics classical vortex coalescence under a KH instability. (f) Emergence of two massive
clusters at t = 700. Results taken from Ref. [5].

through the noise result in some familiar observations about the dynamics of the shear layer.
Firstly, there is a progressive clustering of the vortices throughout the simulation time-scale.
Starting at equilibrium in the line where the boundary was placed, the vortices begin to

3Random shifts in the potential added by choosing random points in the spatial grid where the potential
is slightly varied [5]
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collect into clusters of 2-4 vortices [5]. These clusters combine as time goes on into larger
clusters but the total number of vortex clusters must therefore decrease. Near the end of
the simulation, one observes the emergence of two extremely large clusters. This is exactly
the analog of the rolling up of the velocity shear layer under a classical KH instability [5].
It is actually noted by Baggaley & Parker that the clusters of vortices co-rotate and many
same-charge vortices in a cluster begin to behave as classical regions of vorticity [5]. This
note was somewhat vague when presented by Baggaley & Parker but it still hints at a useful
observation that could be used to strengthen experimental evidence on the existence on BEC
superfluid KH instability induced turbulence.

Before concluding the discussion Baggaley & Parker’s work, it is important to consider
the two general regimes which the vortex shear layer can fall under. In the quantum regime,
there are few vortices in the boundary of the two superfluid streams and this system does
not resemble a classical shear layer. The clustering of the vortices acts as an analog to the
classical roll up of the shear layer under a KH instability but any further connection to a
classical fluid system is difficult. In contrast, under the classical regime, where there are
many vortices at the boundary, the system slowly approaches the classical limit/approxima-
tion of the shear layer as a line of infinitesimal point vortices. Thus, looking at superfluid
shear systems with many vortices at the boundary is interesting from the classical point of
view since it allows the KH instability instability to be considered as more than a simple
analogy to classical phenomena. Indeed, similar to classical shear layers, many vortices in
a superfluid system induce an effective viscosity in the superfluid through which transitions
to turbulence are realised just as in classical fluids [5]. In this experiment, there is the in-
vestigation of two vortex numbers at the boundary, motivated by interest in the classical
limit. Thus, this investigation is not solely interesting in observing shear layer decay into
turbulence via KH instabilities, but also how this observation can further connect superfluid
turbulence to its classical counterpart.

3.3 Connecting Superfluid and Classical Turbulence

It is possible to relate the decreasing cluster number and increasing vortex number per clus-
ter in a BEC superfluid to properties of classical vortex decay in a turbulent system such
as Fig. 3.5 (b) in Section 3.1. Such an analysis was undertaken by McWilliams in 1990,
where a classical system of 1000 randomly placed vortices in a 2D square area with periodic
boundary conditions was numerically simulated [6]. Fig. 3.8 shows contours of vorticity in
such a system which indicate the presence of classical vortices [6, 36]. Simulation of the
dynamics of the classical vortices was achieved via numerical solution of the barotropic vor-
ticity equation with hyperviscous diffusion4 [6, 36]. Fig. 3.8 indicates a clear decrease in
vortex number over time. In fact it is possible to associate a power-law to the decay rate of
the vortex number in a turbulent system[6, 36]. This is similar to the cluster number decay
over time in the BEC superfluid indicating that the clusters of quantum vortices behave like

4See “The vortices of two-dimensional turbulence” by McWilliams for details on this model. This will
not be discussed further here for sake of brevity and relevance.
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Figure 3.8: Initialised system of classical turbulence via random placement of 1000 vortices.
Solid contours indicate positive vorticity and dashed contours indicate negative vorticity. Contours
of zero vorticity are omitted for visualisation of vortices. (a) Configuration after t = 5 (unitless)
time has passed. Configuration after t = 20. Figure taken from Ref. [6].

classical vortices in a turbulent system. In fact, one of the main experimental results in this
project is the derivation of a power law for the decay rate of cluster number for comparison
to the classical case.

Fig. 3.9 shows the results of numerical simulation of the vortex decay rate, indicating
that the power-law scaling for a classical turbulent system lies between −0.7 and −1 [6, 36].
Looking for similar power-laws of this order will indicate that quantum vortices under a
KH instability behave as classical vortices in a turbulent system which will help to con-
nect classical fluidity/turbulence and superfluidity/turbulence. It is also possible to define a
power-law for the average spatial extent of vortices over time in a classical turbulent system
[6, 36]. Fig. 3.8 shows a slight indication that the vortex spatial extent will increase over
time by the increased spread of contours at later times [6, 36]. Additionally, it has already
been noted that the vortex number per cluster is expected to increase in a KH instability
driven BEC superfluid (at least on average) [5]. Thus, in an abstract manner one can say
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Figure 3.9: Log-log plot of the vortex number over time for a turbulent system described in
Fig. 3.8. The dashed lines represent slopes which the log-log plot can be fitted between. The slope
value represents the power-law scaling with which vortex number decays over time. Results taken
from Ref. [6].

that both clusters of quantum vortices and classical vortices in a turbulent system increase
their size over time. To truly make this connection would require a measure of the spatial
extent of clusters in the superfluid experimentally. This would be greatly beneficial since
there exists yet another power-law for the increase in vortex size over time [6, 36] which
could be compared to further experimental results on superfluids. This comparison would
serve to further deepen the connection between the two systems.

The methods described above all give indications of features that could experimentally
suggest the presence of a superfluid KH instability and connect the experimental results
to classical turbulence. Acquiring such evidence requires the use of specific experimental
techniques as discussed in Section 4.



4
Experimental Methods

The focus of this chapter is the detailed explanation and justification of experimental tech-
niques utilised to achieve the goals of the project. Sections 2 and 3 discuss the theoretical
background of BEC superfluids and KH instabilities but the discussion here is on the practical
applications required to achieve the desired BEC superfluid system experimentally and how
data is acquired through imaging techniques. First, there is a discussion on the apparatus
available at the University of Queensland Bose-Einstein condensation laboratory. Here the
focus is on trapping and cooling techniques used to create BECs from 87Rb atoms, including
the shaping of the BEC which occurs during the final stages of condensation. Subsequent
discussion is then directed towards this shaping of the BEC as well as further manipulation
via a digital micromirror device (DMD). This section features specific DMD sequences used
in the experiment to achieve dynamic control over the superfluid, which allowed for the gen-
eration of a velocity shear layer. These DMD sequences require optimisation of their four
parameters which was experimentally achieved via supervised machine learning methods.
The machine learning concept is extensively discussed in this chapter. Afterwards, there is
a final shift in focus to data acquisition and analysis through imaging of the experimental
system.

4.1 Experimental BEC Creation

Experimentally acquiring a BEC is a complex process, requiring a sequence of atomic trap-
ping and cooling stages such that a cloud of atoms can be cooled below the phase transition
critical temperature [7, 19]. While this experimental creation was not a key aspect of the
work undertaken here, it is still worth a brief discussion into this cooling sequence so that
there is no ambiguity in how the experiment was performed. Fig. 4.1 illustrates a simplified
diagram of the main segment of the apparatus which is relevant to this discussion.

23
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Figure 4.1: Highly simplified diagram of the main apparatus used to create BECs. Coils used
for the magnetic fields are shown above and below the center of the apparatus. The 2D MOT used
in initial cooling is located behind the 3D MOT (shown on the very right side above the lower
MOT coil). The MOT coils are used for magnetic confinement in the 3D MOT. The transfer coils
are use along with both the MOT and BEC coils to move atoms from the 3D MOT to the science
cell region. The BEC coils are used for magnetic confinement and levitation of the BEC in the
science cell. The ODT and sheet beam are optical trapping beams used in the science cell for the
final cooling stage. The light from the DMD is shown by the 532 nm beam along the projection
and imaging objectives. The light used for Faraday imaging is also shown by the 780 nm beam
along the same direction. The horizontal imaging beam is used in absorption imaging and is not
relevant for this investigation. The numerical apertures (NA) of both the projection and imaging
objective are the same. Figure taken from Ref. [7].

Using this setup, the Bose-Einstein condensation laboratory at the University of Queens-
land is able to produce BECs in almost arbitrary configurations comprised of ∼ 3×106 87Rb
atoms with an approximate lifetime of slightly over 30 s [7, 23]. The first step in doing so is
the cooling of a large quantity of 87Rb atoms via loading into a 2D magneto optical trap (2D
MOT). This apparatus is not shown in Fig. 4.1 but it is located behind the main segment
shown there. The atoms loaded into this 2D MOT are trapped and cooled before being trans-
ferred to the 3D MOT which is shown on the right side of Fig. 4.1. Collectively, this results
in a collection of atoms with a temperature close to 100 µK scale [7]. MOTs operate via the
principle of scattering combined with the Zeeman effect to achieve cooling [7, 37]. Cooling
lasers detuned to be off-resonance from the D2 transition line of 87Rb are used to induce the
scattering events in the atoms [7]. This drives the transition 52S 1

2
|F = 2〉 → 52P 3

2
|F = 3〉

where the hyperfine structure is induced via the Zeeman effect through a magnetic field [7].
This hyperfine structure at the D2 transition is shown in Fig. A.1 (in the Appendix).

Not all 87Rb atoms will initially occupy the 52S 1
2
|F = 2〉 state, as there is some population
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occupying the 52S 1
2
|F = 1〉 state which will not undergo the transition [7]. An on-resonance

repump laser must therefore be applied to drive the transition 52S 1
2
|F = 1〉 → 52P 3

2
|F = 3〉

in order to mitigate losses in the cooling process [7]. With atoms occupying 52P 3
2
|F = 3〉

after absorption, there will be spontaneous emission into the two S states [7]. This results in
a closed loop cycle of absorption and re-emission for the atoms in the MOT [7]. Thus, there
a series of scattering events occurring under this closed loop which actually serve to trap and
cool the atoms. This is due to the isotropy of scattering, where random emission processes
result in the net momentum change on an atom being in the direction of propagation of
the incident beam [7, 37]. This can be exploited by using counter-propagating beams along
the spatial axes which to exert a net force on the atoms along the propagation axes thereby
trapping and cooling the system [7]. Practically however, the isotropy of emission creates
another problem with atoms being randomly ejected from the trap due to momentum con-
servation [7]. To prevent the atoms from escaping the trap before cooling can be completed,
the applied magnetic field is made spatially varying so that the induced Zeeman effect is
spatially dependent [7]. The outcome of such a configuration is a net restoring force towards
the center of the MOT [7]. Use of all these techniques constitutes the MOT cooling stage of
the experiment which results in 1010 atoms at around 100 µK [7].

Following cooling in 2D and 3D MOTs, there is a magnetic transfer of the atoms to a
purely magnetic trap in the science cell (indicated in Fig. 4.1) [7]. Transfer of th atoms is
achieved via controlled ramping of the magnetic field through three sets of coils; the 3D MOT
coils, transfer coils and BEC coils [7]. Initial loading of the magnetic trap is performed via
a compressed MOT (CMOT), where the 3D MOT cooling laser detuning is increased while
the repump laser power in deceased [7]. The result is a decrease in scattering phenomena in
the trapped atoms particularly at the CMOT center, which means that internal pressure is
also decreased, resulting in an atomic density increase [7].

Only some of the states of the atoms are magnetically trappable in the experiment, thus
holding the atoms in a purely magnetic trap results in a considerable population loss up
to ∼ 55% [7]. This population loss however actually motivates the subsequent microwave
evaporative cooling stage. The atoms are then left to thermalise after the transfer. Once
in the science cell, atomic transitions on the microwave energy scale are driven such that
a small population of atoms is pumped out of the magnetically trappable state [7, 38, 39].
The result is a forced evaporation event where there is a net cooling effect on the remaining
trapped atoms [7, 39]. This process occurs over 4 s and results in a magnetically trapped
cloud of 108 atoms at around 15 µK [7]. This is still above the BEC transition temperature
and so further evaporative cooling is required in an optical dipole trap (ODT).

Transfer to the ODT is achieved via a decrease in the magnetic field stength over 4 s while
a red detuned laser beam with a 90 µm waist is activated in a region slightly below the
minimum of the magnetic trap [7]. After the magnetic field strength is sufficiently small,
gravity will overcome any levitation supplied by the field and the atoms will free-fall onto the
ODT. The ODT operates by inducing a dipole potential in the atoms through electric field
polarisation of the incident light [40]. The induced potential traps the atoms and the depth
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of the potential is proportional to the power of the ODT [7, 40]. Therefore, by decreasing the
power, the potential depth is decreased and more energetic atoms may escape the system.
Before the BEC phase transition of the system, the atoms are transferred to a second ODT;
the sheet beam [7]. Following further evaporation, the resulting atomic cloud contains a
BEC of ∼ 3× 106 atoms with a condensate fraction of ∼ 80% [7]. Yet, before condensation
is achieved in the sheet, the DMD is activated to shape the cloud. Operation of the DMD
is yet to be discussed but in essence this device operates by painting a repulsive potential
onto the sheet and the result is a quasi-2D BEC of some desired configuration. Even after
condensation is achieved however, the DMD can be used to dynamically manipulate the
BEC, which can be used to generate superfluid current for the purpose of creating a velocity
shear layer.

4.2 Dynamic Control of a BEC Superfluid

Shaping and dynamic manipulation of the BEC superfluid, created using the apparatus of
Fig. 4.1, is achieved via a DMD [23]. DMDs are examples of SLMs which are powerful, re-
cently developed devices that offer a great degree of control over BEC systems. SLMs achieve
this via manipulation of the external potential which shapes the ground state through the
Thomas-Fermi approximation (see Section 2.1) [7, 23]. The DMD is simply an array of mir-
rors, which can be though of as a binary array where each mirror has two possible states; on
and off [7, 23]. The DMD array is comprised of 1200×1920 mirrors or pixels, the states of
which can be changed to paint almost arbitrary shapes onto the BEC [7, 23]. The pixels can
even be varied over time to achieve desired dynamic control. Using blue-detuned (532 nm)
light on the DMD will result in a repulsive potential being projected onto the sheet and so it
is possible to design sequences for the pixels on a DMD which will offer dynamic control over
the BEC superfluid [7]. Such sequences are prepared in MATLAB which contains a library
for controlling the DMD. These sequences will be discussed in detail shortly, but their basic
concept is to use basic geometric objects with an associated binary value to program regions
where no repulsive light will be projected and hence where the atoms will condense into.

Due to its versatility, the DMD is an invaluable tool in this experimental investigation of su-
perfluid KH instabilities since it allows for a procedure through which a velocity shear layer
can be generated. To begin with, the computational work by Baggaley & Parker operates
with two parallel but counter-flowing BEC superfluid streams in 2D channels with periodic
boundary conditions on the end of the domain (see Section 3.2). This is easily translated
into an experimental system with a 2D, single-component BEC superfluid in a ring trap
[5]. The idea is to generate superfluid current in two concentric rings then combine the two
streams in order to get the velocity shear. This of course requires exact dynamic control over
the BEC through the DMD. However, utilising the DMD must be done carefully to avoid
losing atoms or inducing excitations such as spurious quantum vortices. These issues can be
mitigated by careful selection of the DMD sequence applied and through the use of machine
learning optimisation of the sequence parameters as is discussed in Section 4.4. The focus
in this section is on the DMD control sequence.



4.2 Dynamic Control of a BEC Superfluid 27

Using basic geometric objects for programming the DMD sequence is sufficient in this ex-
periment. For example, by use of two circles it is possible to create a ring. By default, all
pixels are set to the “on” state at the beginning of a DMD sequence. In this default state
then, atoms in the BEC would be repelled by the potential everywhere. It is possible to
instead program the initial state of the DMD pixels such that pixels within a circle of some
fixed diameter centered on the DMD grid origin have their state set to “off”. Now the BEC
will become trapped in this circle initially. In the project, the circle diameter was taken to
be either 100 µm or 125 µm as became relevant (see Section 5). This is shown in Fig. 4.2
(a) which is an image (see Section 4.3) of the BEC with the initialised DMD. Creating a

Figure 4.2: Example of a DMD sequence used to generate a velocity shear layer in the exper-
iment. (a) Initial configuration on DMD activation. (b) Configuration after ramping in a small
circle from the centre. (c) Subdivision of the BEC into two concentric rings separated by a small
barrier with stirring barriers in each ring. (d) Generation of a persistent superfluid current through
stirring of the channels. Red arrows indicate stirring direction. (e) Configuration after the removal
of the stirring barriers (post stirring). (f) Configuration after the removal of the channel separation
barrier, resulting in a velocity shear layer manifest as a line of quantum vortices.

ring is quite simple following this same procedure; simply designating a smaller circle within
the original where the pixel states are switched back to “on” seems sufficient. However,
it is important to be careful here, simply making this ring the starting state of the DMD
will result in atom loss and potential excitations from atoms repelled by the potential of
the center circle. Instead, a ring must by dynamically created. Starting from the circular
configuration in Fig. 4.2 (a) it is possible to grow/ramp in the desired repulsive circle from
the center over time. This is done by a linear growth of the radius over time from 0 µm to
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some final value. In the experiment wo values for the final radius of 27.5 µm and 50 µm
were used depending on the outer circle diameter. The resulting BEC configuration under
this process is shown in Fig. 4.2 (b) where the atoms were not lost but merely pushed into
the ring from the center of the condensate.

In order to progress the sequence towards generating a velocity shear layer, two channels
need to be created from the ring at this stage. This is achieved in a similar fashion to the
ramping in of the central barrier. Specifically, a repulsive circle can be inserted starting with
a radius that is within the ring and growing only slightly such that the ring is subdivided
into two channels. Practically, this is slightly more complex to achieve via programming
since such a circle would immediately destroy the region where the inner channel would be
located. Instead, immediately after the repulsive circle is initialised, an attractive circle is
imposed over it. Immediately after this, a smaller repulsive circle is added to where the
central barrier would be. These last two circles do not vary in time but now the channel sep-
aration can be ramped in without issues. Meanwhile, for sake of conserving total sequence
time, two smaller barriers are ramped in which intersect the resulting channels. These small
barriers are actually ellipses with large eccentricity such that they approximate flat barriers
in the channels. Their insertion is performed via increasing the minor axis length over time
from 0 µm to 5 µm. The result is Fig. 4.2 (c), and the BEC system is now ready for the
creation of currents in the channels.

The phase-velocity relationship in Eq (2.10) gives an indication on how to generate a current
in these channels. All that is required is to generate some phase gradient in the BEC [41].
Realising this phase gradient is possible through a variety of experimental techniques. For
example, it is possible to employ phase imprinting, where the background potential depth
is used to fix the phase over the rings [42]. with the currently presented DMD sequence it
is more logical to apply stirring processes to generate the phase gradient. This is due to
the simplicity of applying this method as well as the fact that machine learning methods
can be applied to optimise stirring more readily in the laboratory (see Section 4.4). By
moving the stirring barriers around the channels, the repulsive atom-light interactions will
cause a build up of atoms. This generates differences in chemical potential which, through
repulsive atomic interactions, ultimately results in the formation of superfluid flow [14]. This
description can be reconciled with the phase-velocity relationship. As the barrier moves to
generate velocity, the gradient of the phase of the macroscopic wavefunction must increase,
which itself occurs due to the tunnelling of phase through the barrier similar to electron-pair
tunnelling in a Josephson junction in a superconductor [14]. The stirring was achieved in
experiment over parameters optimised by a machine learning algorithm, albeit with a fixed
linear acceleration. This choice was made based on prior investigation of machine learning
optimised persistent currents in BEC superfluids. The stirring is shown in Fig. 4.2 (d) where
the red arrows indicate stirring direction for each channel. At this stage in the sequence,
flow velocity is generated and soon the velocity shear can be created.

There is a need to remove the stirring barriers before recombining the channels to cre-
ate the shear layer. This is achieved by decreasing the minor axis lengths linearly in time
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over some ramp down time leaving counter-flowing superfluid currents in each channel as
in Fig. 4.2 (e). Finally, the separation barrier can be removed using a similar process to
its insertion. Instead of growing a repulsive circl however, an attractive circle is instead
used (remembering also to impose the repulsive central barrier). The final result is shown
in Fig. 4.2 (f) where there are will ideally be a line of vorties at the location of the central
barrier. However, under the conditions of the image taken for Fig. 4.2 (f), the vortices are
not resolvable and so cannot be easily seen. Instead certain imaging techniques are required,
as is discussed in Section 4.3. By waiting a set amount of time after recombining the two
stirring barriers (referred to as the hold time), the dynamics of the vortices can be observed,
assuming that they are resolvable.

4.3 Imaging and Image Analysis

In the experiment, all data is acquired in the form of images of the BEC superfluid at
various time. It therefore becomes important to apply appropriate imaging techniques along
with methods for extracting and analysing data from images. Two imaging techniques are
available with the apparatus shown in Fig. 4.1; absorption and Faraday imaging. Both
these methods exploit the atom-light interaction to acquire images of the BEC system, but
the parameters of interest, strengths and drawbacks of the methods vary [7]. In the work
presented here, only Faraday imaging was used due to its various benefits over absorption
imaging and direct relevance to observing vortex dynamics.

4.3.1 Faraday Imaging

Generally, absorption imaging is performed via looking at the attenuation of a probe laser
beam through the BEC to determine local atomic density [7]. Scattering of the probe from
atom-light interaction will result greater decreases of transmitted intensity past regions of
higher density [7, 43]. Faraday imaging instead makes use of polarisation rotation to probe
the density distribution of the BEC [7, 43]. Through the use of a probe beam, changes in the
probe beam polarisation due to atomic interaction with the light can be used to determine
local atom number density. The changes in polarisation arise from a refraction through the
cloud [7, 43]. The BEC acts therefore as a density dependent refracting lens for the light due
to interaction between the electric field of the probe beam and the atoms in the BEC [43].
The electric field thus acquires a phase shift when passing through the BEC which depends
on detuning and intensity of the probe beam [7]. This results in the change of polarisation
of the probe beam beyond the cloud. Due to the relationship between the polarisation and
beam intensity, it becomes possible to relate the local 2D atom number density n(x, y) of
the BEC to the intensity of the probe beam before II(x, y) and after IF(x, y) passing through
the BEC via [7, 43]:

n(x, y) ∝ arcsin

(√
II(x, y)

IF(x, y)

)
.

In Fig. 4.1 the Faraday probe beam is shown superimposed over the DMD light. Due to
the setup, a double shot imaging technique is actually required to determine local density.
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Using the imaging objective it is possible to measure IF(x, y) in the presence of a BEC with
a single image [7]. The probe beam intensity however requires imaging via the imaging ob-
jective without the presence of a BEC [7]. Thus two images are taken in any experimental
run; the first is an image with a BEC obscuring the probe and the second is taken after
the removal of the BEC from the apparatus. with this procedure the atom number density
of the in-sheet cloud can be determined but it is not yet obvious why Faraday imaging is
preferable to absorption.

From the experimental setup in Fig. 4.1, it is clear that Faraday imaging is restricted
to be along the vertical plane. Absorption imaging on the other hand is accessible along the
horizontal axis and vertical direction, as indicated by Fig. 4.1. This may seem disadvan-
tageous for Faraday imaging, but due to the optical sheet confinement the relevant vortex
dynamics all occur in the horizontal plane for the quasi-2D system (see Sections 2.3 and 3.2).
Thus only vertical imaging is required for this investigation. with the available apparatus,
Faraday imaging is typically chosen over absorption imaging for these vertical images due to
the higher resolution provided and the higher sensitivity to density fluctuations for modest
system densities [7]. Absorption imaging is instead used in checking the total atom number
in the cloud prior to each experimental run [7].

Being able to image the atom number density is not sufficient for the data required to
investigate KH instabilities in the BEC system. The main investigation is concerned with
the dynamics of vortices created at a superfluid shear layer via the process described in
Section 4.2. Hence a method for detecting vortex positions from Faraday imaged BECs is
required. Yet before such a method can even be prescribed imaging of the vortices them-
selves presents an issue. Specifically, it is difficult to resolve the vortex cores at the shear
layer due to their small size. This is evident in Fig. 4.2 (f) which does contain a line of quan-
tised vortices acting as the shear layer, but resolving them is troublesome. To circumvent
this issue, time-of-flight (TOF) can be employed along with the Faraday imaging technique.
TOF imaging is performed by completely removing the trapping potential and allowing the
BEC to expand freely [7].

As a result of the expansion, the vortex core sizes increase and become readily resolvable.
Naively one might expect free expansion to obscure the in-plane dynamics, however practi-
cally this is not the case. Due to the tight confinement vertically in the optical sheet relative
to horizontal confinement, expansion mostly occurs vertically [7]. The result is that the
shape and structure of the quasi-2D system is largely preserved after short TOF expansion.

It should be noted that using TOF imaging is destructive to the system, and so dynam-
ics of vortices can only be observed using a statistical measure over many experimental runs.
That is to say, it is not possible to image different hold times for a single experimental run.
Instead, multiple TOF images are taken for each hold time with which quantities such as
vortex number and position could be used to statistically investigate average cluster numbers
and vortex numbers per cluster for each hold time. The use of TOF imaging is necessary for
vortex detection but does complicate analysis of the results. In the experiment, 5 ms TOF
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Faraday images are taken. This choice was made via brief investigation, where images were
taken over a range of 0− 8 ms TOF. It was found that vortex detection (described below in
Section 4.3.2) was most effective at 5 ms.

4.3.2 Vortex Detection

Figure 4.3: Processing of a Faraday image via the Gaussian blob algorithm [8]. The algorithm
takes the original image (top left) and applies a Gaussian filter (top middle and right) which blurs
regions of higher density but accentuates low density points. Afterwards, the Laplacian of the
Gaussian filtered image is taken (middle left) and thresholded to isolate the vortex pixel clusted
(middle). The clusters are then grouped together via a sorting algorithm (middle right) from which
it is possible to determine the number of vortices and their positions via an amplitude measurement
(bottom left and middle). The final result is superimposed on the original image for comparison
(bottom right). This result is shown in Fig. 4.4 in more detail.
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In an attempt to remove error in human analysis of counting vortices in an image and de-
termining their position, the Gaussian blob algorithm [8] for clustering was employed in
MATLAB to automate vortex detection. This pixel sorting method is useful since vortex
cores appear as collections of dark pixels in the Faraday images as is clear in Fig. 4.4. It
should be noted that the vortex shear produced in this image results from an optimised
stirring process, used to consistently place 20 vortices in a line, found with the machine
learning methods described in Section 4.4. Regardless, the image serves as an excellent ex-
ample of vortex resolution and detection. The detection algorithm is shown sequentially in
Fig. 4.3 and it works by first applying a Gaussian filter to the Faraday image. Applying
the filter results in a blurring of regions of high density but an accentuation of low density
regions such as the vortex cores. Afterwards the Laplacian of the Gaussian filtered image
is taken at each point in the image, which makes the regions of transition from low-to-high
density more readily observable. From Fig. 4.3 is it clear however that many such regions
exist beyond just vortices however the magnitude of the Laplacian at the vortex points is
significantly larger. This means that removing all points below a certain threshold in the
Laplacian image should allow for only the vortices to be observable.

The choice of threshold depends on the image and has no general trend. Instead a uni-
versal threshold is typically chosen, subject to performance of the detection algorithm on
a small set of images. In this experiment the threshold was set to 0.4 by using such an
investigation. Once the thresholded image is acquired, cluster sorting algorithms can group
collections of pixels together and construct an estimate on the number of vortices and their
positions. The outcome of an example detection is given in Fig. 4.4. Here the performance

Figure 4.4: Faraday image of shear layer for 5 ms TOF with the outcome of the vortex detection
algorithm superimposed. White circles represent points where the detection algorithm found a
vortex whereas the dark pixel spots in the image represent resolved vortices.
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of the vortex detection algorithm is completely accurate, but generally this is not the case.
It is common for the algorithm to not detect vortices with slightly smaller cores due to the
thresholding. Additionally, if collections of vortices are close together, the algorithm likely
detects the collection as a single vortex. To account for the error introduced via the detec-
tion algorithm, there is a need apply the detection algorithm to multiple images taken over
different experimental runs of the same system configuration. This will allow for a statistical
representation of the detection, complete with error. In the machine learning optimisation
data, three images of each parameter set were taken for such statistics whereas in the vortex
clustering investigation five images were used for increased precision and accuracy of the
results. These choices were made with a balance in accuracy and data acquisition time in
mind. As machine learning is not the main focus of the investigation, less time was allocated
towards the optimisation procedures. In the vortex clustering data acquisition more time
was allocated and so more images could be taken which would increase the accuracy of the
results. However, the application of the vortex detection algorithm can be extended beyond
simply cluster analysis.

4.3.3 Flow field from Vortex Detection

Once the positions of the vortices are given through the Gaussian blob algorithm, it is possible
to approximate the streamlines and velocity flow field of the superfluid. This is achieved
through the Electrostatics(es) module in COMSOL [44, 45]. This module uses electrostatics
equations to derive the electric field and potential of arbitrary charge configurations [44, 45].
It is possible to model the quantum vortices as point sources in an electric field [44]. Under
this approximation, the electric potential is analogous to the streamfunction of the superfluid
containing the vortices and so the velocity flow field and streamlines can be approximated
from the electric potential in the model1 [44, 45]. One caveat of the application COMSOL in
this thesis is that any background persistent current remaining after the combination of the
two rings is assumed to be zero. Checking whether this is the case with the experiment was
not done, as the KH instability and resulting turbulence should behave similarly in a rotating
system. Checking for this background flow will be the subject of future work. Regardless,
use of the stream profile of an image is quite useful for qualitative results about transitions
to superfluid turbulence as well as vortex clustering.

4.3.4 Vortex Clustering

On the topic of clustering analysis, it becomes relevant to discuss the clustering algorithm
used to detect whether clusters of quantum vortices were present at various hold times. The
clustering algorithm employed was that of the “density-based spatial clustering of applica-
tions with noise” (DBSCAN) [9, 10]. This algorithm operates by arbitrarily taking any point
p in a data set D then considering a ball Bε(p) of radius ε around p [9, 10]. This ball is
defined by a distance function/metric, typically taken to be the Euclidean distance (as is the

1For more information on the use of COMSOL in superfluid stream simulations, the reader is referred
to the superfluid optomechanics website by Christopher G. Baker: https://christophergbaker.com/

superfluid-optomechanics/. This website coincides with Ref. [45]

https://christophergbaker.com/superfluid-optomechanics/
https://christophergbaker.com/superfluid-optomechanics/
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case here) [9, 10]. If there are Nε(p) data points (including p) within distance ε of p there is
the potential for a cluster to be present. One defines a minimum number of points M such
that the condition for a cluster is that Nε(p) ≥M [9, 10]. If this is the case, all points in the
ball are said to be directly density-reachable and are added to the cluster [9]. All directly
density-reachable points to p are then individually considered in a similar manner. Specif-
ically, for a point q that is directly density-reachable from p, one again considers an ε-ball
Bε(q) and finds other points within the ball [9]. It is not necessary for the number new points

Figure 4.5: Example illustrating DBSCAN cluster sorting via density-reachable and density-
connected points in a data set. Clusters are constucted from all density-reachable points. Figure
taken from Ref. [9].

Nε(q) to satisfy Nε(p) ≥ M [9]. Any new points which are directly density-connected to q
but outside of Bε(p) are said to be density-connected to p. Points that satisfy Nε(p) ≥ M
are called core points whereas points which are simply density-connected are called border
points. If p cannot find at least M − 1 points in Bε(p) then it is classified as a noise point
not associated to any cluster. The concept of density reach-ability for clustering is shown
in Fig. 4.5. DBSCAN associates clusters to finding the maximal set of density-connected
points from some arbitrarily selected initial core point [9]. This process of selecting core
points and adding border points is repeated until all points in D are classified as being in
some cluster or as noise points [9, 10]. In the worst case where the algorithm performs one
ε-ball inquiry for each n points in D, DBSCAN has computational complexity varying from
O(n log(n)) to O(n2) depending on how efficiently indexing of the data points is performed
(usually problematic for higher dimensional data sets) [9]. The choice of M and ε are crucial
to the success of DBSCAN as they define the cluster parameters.

M is typically chosen based on how sparse the data set is [10]. For the experiment here, there
are only at most 30 data points (vortices) to sort into clusters which is a relatively sparse
data set, and so M = 2 is chosen. This will ensure that clusters are only considered when
at least two vortices are close to one another. Any vortices classified as a noise point will be
treated as clusters of single vortices for the purposes of the analysis. The choice of ε is more
complex to define and is discussed in detail in Section 5. Generally however, ε is chosen
via some statistical measure of the nearest-neighbour distances between vortices. There are
many issues which can arise from a poor choice of ε which are illustrated in Fig. 4.6. If ε is
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not sufficiently large, then DBSCAN will fail to detect certain clusters which are more spread
[10]. In the worst case, no clusters will be detected. In contrast, choosing ε that is excessively

Figure 4.6: Illustration of problems with DBSCAN having global variables on an example data
set. (a) Shows true clustering of the data points known beforehand. (b) Choosing ε that is too
small results in failure to detect cluster C2. (c) Choosing ε that is too large results in the inclusion
of noise points which are not actually part of C1. Figure taken from Ref. [10].

large results in the addition of points to clusters which should not be included [10]. In the
worst case here, all points in a data set will be placed in one large cluster. These issues arise
from the fact that ε and M are global variables when they should vary between clusters [10].
Alterations to the DBSCAN algorithm are possible which somewhat aid in removing the
global variables such as grid based density clustering [10]. Such algorithms however increase
computational complexity substantially [10] and are impractical to implement within the
time-frame of the project. Thus, DBSCAN suffices for vortex cluster detection in the experi-
ment given careful attention to the choices of ε and M . MATLAB is employed to implement
DBSCAN in the experiment. Specifically, within the Statistics and Machine Learning Tool-
box is the function dbscan(X, Eps, MinPt) which takes in a data set of positions X, the ε
value as Eps and the minimum points M as MinPt outputs a vector of integers. The inte-
gers represent the cluster labels, with noise points classified as −1 and clusters with positive
integers. The index of the output vector corresponds to a vortex with the same position
index in X. Using the output vector it is possible to find the cluster number of an image
as well as the mean, median and maximum vortex number per cluster. This is outlined in
the pseudo-code in Appendix A.2 which was used to perform clustering analysis in Section 4.

Combining the imaging and image analysis techniques discussed in this section with ma-
chine learning optimised velocity shear layers allows for the observation of evidence for KH
instability induced transitions to turbulence in experimental BEC superfluids.
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4.4 Machine Learning Optimisation Concept

Before the experiment on KH instabilities in BEC superfluids could be completed, there was
the need to find some methods for optimising the stirring process discussed in Section 4.2.
Optimisation is required in order to efficiently and consistently realise different shear velocity
values via stirring of the BEC superfluid channels. Optimisation increases the replicability
of the experiment which is especially important when considering multiple images over dif-
ferent experimental runs are required to construct a statistical measure of vortex dynamics.
Additionally, a higher level of control over the velocity shear layer can be achieved via opti-
mising the stirring to produce fixed vortex numbers at the superfluid boundary. The ability
to realise different shear velocities is important for testing vortex dynamics over a range
of initial conditions. Optimisation also minimises noise/excitations produced via stirring
which allow for the study of KH instabilities in a more ideal system where the focus can be
purely on vortex dynamics. Overall, the motivation behind optimising the creation of the
velocity shear layer is evident but some issues arise in practically achieving this optimisation.

One of the issues is that the parameter space of the stirring can be quite large and, even
when the parameters are simplified, the relationships between the parameters and an ideal,
controlled shear layer are not known in the experiment. This meant that brute-force opti-
misation as well as any human optimised methods were inefficient and impractical. Instead,
a fast and accurate machine learning method would be required to optimise stirring. There
are four parameters which classify a stirring process in the experiment; 1) the ramp in times
for all repulsive barriers, 2) the ramp out times for the stirring and separation barriers, 3)
the total stirring time over which the stirring barriers are moved around the channels and
4) an acceleration coefficient/scaling which multiplies the acceleration profile for the stirring
barriers. The acceleration profile itself was fixed to be linear for simplicity. Due to the
complexity of the parameter space, it becomes inefficient to use human optimised methods
in the experiment. Instead machine learner controlled optimisation is more appropriate due
not only to efficiency but a lack of preconceptions about these experimental parameters.

4.4.1 Machine Learning Algorithm

The machine learning algorithm employed in the experiment was that of a Gaussian process
(GP) regression. This is a supervised machine learning method, meaning that there is
an external measure of the error produced by the parameter model used by the learner
[46, 47]. This error is quantified via a loss or cost function which is minimised when the
parameter set is optimum [47–49]. Supervised learning methods typically feature a data set
D(X,y) comprised of the set of independent variables X = {x1,x2, . . . ,xN};N ∈ N, xi ∈
Rm, i ∈ {1, 2, . . . , N},m ∈ N and dependent variables y = {y1, y2, . . . , yN} associated to
the outcome of each independent data point [46, 47]. In the experiment, the set X is given
by the parameters which control stirring and the dependent variables y are given by the
vortex number at the shear layer for each stirring parameter set. The learner has its own
parameterisation θ of a mathematical model which maps any dependent variable x to it
associated output y via a function of the learner parameters f(x; θ) [46, 47]. The cost
function C (y, f(X, θ)) is then defined as the error in using the learning model parameters
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θ to fit the complete independent set X to the outcomes y [46, 47]. In the experiment, two
cost functions were used, defined as:

C = (Target Vortex Number−Measured Vortex Number)2 , (4.1)

C = |Target Vortex Number−Measured Vortex Number| , (4.2)

where the target vortex number was fixed and the measured number was determined via
vortex detection (see Section 4.3). These choices of cost ensured that the vortex number
at the shear layer would reach some target number. For the first set of optimisations, Eq.
(4.1) was used. The squared term punishes large deviations from the target vortex number.
Small deviations of one vortex from the target would not have large costs but, because of
the squaring of the error in C, a system have two or more vortices away from the target was
severely punished. This would ensure that the optimised parameters not only have the target
vortex number but also did so consistently. However, for the final optimisation performed
in the experiment (to a targe of 30 vortices), the cost function in Eq. (4.2) was exclusively
used. The reason for this change was the observation that variation in vortex number was
unavoidable for large target vortex numbers, and so the punishment of slight variations in
the squared cost would become problematic.

Other choices of cost do exist and having increased cost complexity might have aided in
slightly increased accuracy but, as is discussed in Section 5.1. Ideally, one would measure
this cost constrained to the separation barrier region and then increase cost according to any
excitations produced by stirring. This was attempted but the outcome was only a decrease
in the accuracy of the optimised parameters to truly generate a controlled shear layer. These
basic costs presented here are more than sufficient for the purposes of generating controlled
velocity shear layers using GP regression machine learning.

GP regression is performed on the basic principle of finding θ by minimising C subject
to some training data set2. The model developed by the learner through GP regression can
then used to find the optimum stirring parameters by inference.

4.4.2 M-LOOP

To apply the GP regression in experiment, M-LOOP was applied. M-LOOP is a machine
learning controller developed at ANU by Wigley et al. with the specific intention of con-
trolling parameters in ultracold atom experiments [50, 51]. M-LOOP had been shown to
be successful at quickly and accurately finding optimum parameters in such experiments
and was already in application in the University of Queensland Bose-Einstein condensation
laboratory before this project began. Using M-LOOP requires the input of the learner type
since many are available to this controller besides the desired GP regression (such as neural-
networks) [51]. The choice of a GP regression therefore is based on prior experience in the

2GP regression actually features statistical modelling via Bayesian inference [47, 48], where the prior
distribution is taken to be a Gaussian distribution of functions which are slowly reduced to a smaller set of
functions that are able to accurately model a training data set. For sake of brevity this is not discussed here
but the reader is indead referred to Ref. [47] for details on GP regression.
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laboratory using this learning method and also due to the lack of functionality of the neural-
network learner under the installed package of M-LOOP.

Operating M-LOOP in practice meant integration of the software with MATLAB which
controls the DMD sequences. This was achieved via running M-LOOP in a Unix environ-
ment on a separate device to that which controlled the experiment, and allowing file transfers
between the two through a shared folder. Following integration of the software, M-LOOP
was able to feed the four stirring parameters (listed at the beginning of this section) into
the DMD allowing vortex detection to be performed in order to measure the cost C [Eqns.
(4.1) & (4.2)]. The cost was then fed back into M-LOOP so that the learner could associate
how well the experiment ran compared to the desired outcome. In practice, the experiment
was run three times using each parameter set, and the cost of was taken to be the mean of
the three independent cost values. Error was also estimated using the three trials via the
standard error measure of the costs. The learner would then be able to find the optimum
stirring parameters by finding the minimum cost, which ideally would be zero according to
Eqns. (4.1) & (4.2).

In order to train the learner to achieve optimisation, 10 training runs were used where
the learner generated and fed random stirring parameters to the experiment. The statistical
measure of cost was performed using these parameters and returned to the learner. After
these 10 training runs, convergence to optimum stirring was observed. This optimisation
was performed for two choices of target vortex numbers; 20 and 30. The outcomes of all
machine learning based experiments are discussed in Section 5.1.
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Transitions to Turbulence in Experimental

Bose-Einstein Condensates via
Kelvin-Helmholtz Instabilities

This chapter presents and analyses the results from the experiment using methods as de-
scribed in Section 4. Despite the main focus of the investigation being on quantum vortex
dynamics, a large portion of the experimental work was dedicated to machine learning op-
timisation of the superfluid velocity shear layer. The first section of this chapter discusses
this work. Here, all experimental work performed to test and apply the machine learner M-
LOOP is analysed and the outcomes of the learner optimised stirring processes are discussed
in detail. The second section focuses on the dynamics of vortices at the optimised shear
layer and how these qualitatively and quantitatively supports the transition to turbulence
via KH instabilities in the experimental BEC system. The relevant quantities and trends
of vortex cluster dynamics discussed in Section 3.2 are shown to persist in the experimental
system, including power-law scaling of the cluster number over time which is comparable to
classical vortex systems. The outlook and future work leading on from the results presented
are discussed in the subsequent chapter.

5.1 Configuring and Applying Machine Learning

Application of M-LOOP to produce consistent and controlled shear velocities (manifest as
vortices at the superfluid boundary) was a key aspect of the experiment. The investigation
of multiple shear layer conditions is necessary for diversity in the data as well as building
further connections between a classical and superfluid shear layer. This is because a discrete
vortex shear layer will approach the classical continuum of point vortices at the shear layer
in the limit of large vortex number. Thus having data sets with low vortex numbers and
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large vortex numbers will enable a comparison between the behaviours of the “quantised”
shear layer case an the “classical” limit, thereby establishing a connection between the two
regimes, while also exploring phenomena unique to the quantum regime. M-LOOP was
tasked with optimising a set of four parameters such that the cost in Eqns. (4.1) & (4.2) was
minimised to zero. The results from machine learning controlled optimisation are presented
in this section and their influence on the experiment is discussed.

5.1.1 Preparing for Machine Learning

Before optimisation via machine learning was undertaken, some foundational work was first
required in preparation. The first of which was a validation test as to whether a vortex
shear layer could be produced in experiment. To this end, arbitrary stirring parameters
were chosen and standard Faraday images were taken in TOF just to inquire into whether
such a shear layer would be achievable and resolvable. The parameters chosen were 500 ms
total stirring time, 200 ms ramp-in time, 200 ms ramp-out time and an acceleration scaling
of 20 (see Section 4.4). This first experiment made use of a ring trapped BEC with an outer
diameter of 100 µm and inner diameter of 50 µm. Finally, there was no hold time imposed
on the system since vortex dynamics were not of interest at this point. Resolvability of the
vortices was tested simultaneously by taking images over different TOF values of 0 ms, 3
ms, 5 ms and 8 ms.

These images are shown below in Fig. 5.1. In all instances there is a clear emergence
of a ring of vortices where the separation barrier was located. This result was promising
from an experimental standpoint since it suggested that a velocity shear layer could in-
deed be generated in the experimental BEC. As expected however, the arbitrary parameter
choice also resulted in many spurious vortices away from the shear layer indicating that
optimisation methods were needed to only generate the vortex shear layer. Furthermore,
the different TOF images show the growth of the vortex cores with increased TOF. In Fig.
5.1 (a) where there is no TOF, the vortices are barely resolvable and the vortex detection
algorithm scarcely detected any vortices in this image. A similar effect is seen in Fig. 5.1 (d)
with 8 ms TOF where the expansion has occurred for slightly longer than required. Thus,
while it is easier to resolve the larger vortex cores, many vortices seem to overlap and even
show signs of moving out of focus for the imaging objective.

Fig. 5.1 (b) and (c) on the other hand represent ideal cases, where the vortex cores are
easily resolvable but the system remains intact with 3 ms and 5 ms TOF respectively. While
both TOF choices are excellent candidates for the remainder of the experiment, the vortex
detection algorithm more accurately detected 5 ms TOF vortices than that of the 3 ms
instance. It is however worth mentioning that only one set of images was used to deter-
mine this result when ideally multiple images at these TOF values should have been taken
to develop a statistical measure of the performance of the vortex detection algorithm for
each instance. Fortunately, the choice of 5 ms was sufficient at allowing for accurate vortex
detection throughout the remainder of the experiment.
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Figure 5.1: Varying TOF images with the initial (arbitrary) stirring parameters. (a) 0 ms
TOF. (b) 3 ms TOF. (c) 5 ms TOF. (d) 8 ms TOF.

Figure 5.2: 5 ms TOF with arbitrary stiring parameters with some hold time was imposed
before taking the image. (a) 100 ms hold time. (b) 250 ms hold time.
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The outcomes from this trial are clear; shear layer creation is possible and vortices will be
imaged under 5 ms TOF. At this point however, it is only speculated that the KH instabil-
ity is present, as to truly verify this claim it becomes necessary to observe a transition to
turbulence via roll-up and clustering of the shear vortices. If the KH instability is present,
the initial shear layer will rapidly decay via the emergence of turbulence, arising from the
small perturbations seeded into the shear layer (see Section 3.2).

The next preliminary test conducted was to see if clustering could be observed at differ-
ent hold times. The same stirring parameters and ring dimensions were used for this trial
only now the system was held for 100 ms and 250 ms. The idea with this was not only to
attempt to observe clustering but also to gauge the timescales under which potential clus-
tering occurs. Fig. 5.2 shows the Faraday images under these hold times.

These preliminary tests were performed as qualitative measures to understand whether there
was a possibility for success in the investigation and several initial conclusions can be made.
There is a clear shift of the vortices from the initial ring configuration is observed indicated
a clear movement from equilibrium which is already suggestive of some instability in the
system. Furthermore, there seems to be clustering in the images, which is indicated by
regions of large concentrations of vortices followed by regions of no vortex observations. Of
course, precise clustering measurement would require quantitative analysis of the images to
make this observation exact. Additionally, if clustering is present, it is clear that 250 ms
hold time is not sufficient to see a progression of the vortices into only two large clusters
as was the limit in Baggaley & Parkers computational work on a similar system (see Sec-
tion 3.2) and so subsequent experiments were performed up to considerably longer timescales.

Furthermore, there is an obvious loss of vortex number between the two times. This sug-
gested that main dynamics experiments should be performed with more finely spaced hold
times. The spacing of hold times for the clustering experiments was 10 ms due to this ob-
servation and since this small time step allowed for more data to be acquired. The loss of
vortices also further suggested that the dimensions of the ring were inefficient for observing
dynamics and so alterations would have to be made. Eventually, subsequent trials would
be performed with a ring with an outer diameter of 125 µm and inner diameter of 27.5 µm.
Before the main data was taken in the thicker ring, the preliminary system was used to
test the success of the machine learning algorithm. These results are discussed in the next
section.

5.1.2 Thin Ring Optimisation

The use of arbitrary stirring parameters in the preliminary experiments proved to result in
considerable numbers of undesirable excitations in the ring. Optimising the stirring process
via M-LOOP as discussed in Section 4.4 resulted in quickly and accurately removing these
undesirable excitations and generating controlled shear layers. The importance of such ma-
chine learning optimised initial conditions cannot be overstated. The isolation of a shear
layer ensures that all conclusions made about vortex dynamics would be the result of effects



5.1 Configuring and Applying Machine Learning 43

originating from the shear layer. Additionally, the added control from the machine learner
over the initial vortex number would allow for multiple initial conditions to be investigated
and thus compared to evaluate the strength of any conclusions made. The first complete
optimisation was in the thin ring configuration to a target number of 50 vortices.

This large number was chosen in order to verify the limits of the optimisation as human
optimised stirring processes had yet to reach this many vortices without inducing undesir-
able excitations. M-LOOP supplied an initial 10 parameter sets with randomly generated
parameters for training. For each parameter set, three images were taken and the average
cost and standard error were returned into M-LOOP as the total cost and uncertainty of
the parameters. Following training, the learner would make an attempt at inferring the
optimum parameter set. The cost for this could be returned to M-LOOP and compared to
an estimate for said cost. Depending on the accuracy of this result, M-LOOP could provide

Figure 5.3: Examples of good and poor runs as classified by the cost function. (a) Good run
but not ideal due to the lack of target vortex number. Low, non-zero cost. (b) Poor run due to
excessive vortices (from stirring in the super-sonic regime). Very high cost.

further inferences. After four machine learning inferences, M-LOOP would present a new
random parameter set simply to break up the process of inference with new data.

For this optimisation, 30 trials in total were performed simply to observe convergence of
the process. Yet before looking at accuracy and convergence, it was important first to verify
that the cost function chosen in Eq. (4.1) gave the desired classifications for “good” and
“poor” parameter sets. Examples of good and poor runs under this cost function are shown
in Fig. 5.3. The low cost example in Fig. 5.3 (a) shows a trial where the vortex shear layer
is clear but the total number of vortices is not at the target number. In such a case the cost
was found to be relatively low but non-zero as expected. Images with similar cost presented
stirring parameters that were subsonic as suggested by the lowered number of undesirable
excitations. Optimisation of said parameters was still not achieved at these points however.
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In contrast, when stirring was super-sonic, excessive numbers of spurious vortices were ob-
served, which obscured the shear layer and even greatly effected the bulk density of the BEC.
An example of such an outcome is shown in Fig. 5.3 (b), which is also a typical image for
considerably high cost parameters. These two images are only examples of costs associated
to parameter sets as displaying all 90 images for the 30 trials is uninstructive. The general
trends discussed here are sufficient to summarise the trends in the entire data set. Fig. 5.4
shows the evolution of cost over time for this optimisation procedure. The first 10 runs

Figure 5.4: Plot of the cost over different runs (parameter sets) in optimising the thin ring
shear layer to 50 vortices. Red asterisk points represent randomly generated parameters used for
training while blue circles represent inferred parameter sets from the GP regression. Error bars are
estimated via the standard error in the cost using three images under each parameter set.

shown are the randomly generated training parameter sets, explaining why the costs and
associated errors for these sets vary considerably. Interestingly, error varies depending on
the run number and not on the cost of the parameter set. This is most clear by looking
at the data point for run 5, which does not have the highest cost for the training set but
certainly has the largest error. In contrast, run 8 has the highest cost but one of the lowest
error values. Naively, one might conclude that the cost function is not actually classifying
parameter sets as desired. This is not the case as the true explanation has to do with the
number of vortices generated at each run. Typically, high error runs were associated to im-
ages similar to Fig. 5.3 (b) with excessive numbers of random undesirable excitations. These
random excitations would result in an extreme variation in the vortex number between the
three images taken for the statistical measure of cost. This resulted in large errors associated
to the cost.

In contrast, high cost points with low uncertainty were associated to images with very few
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vortices. The chosen cost function [Eq. (4.1)] severely punished the large difference between
such data sets and the target number of 50 vortices. However, due to the lack of undesirable
excitations under such parameters, the images taken were consistent in producing the same
vortex numbers at the shear layer. This might have reflected a poor choice of cost were it
not for the success of the machine learner optimisation. Regardless, the variation in cost
and uncertainty for the initial training set is well understood.

Immediately after the 10 training runs, the learner predicts an optimum parameter set.
In Fig. 5.4, there is a clear decrease in the cost under the optimised parameters shown as
the blue circles between runs 11-14. The optimised parameters have the lowest cost values
(within error) observed in the entire data set. The optimised parameters are given below
in Table. 5.1: Between runs 11 − 14, the predicted best parameters did not vary greatly

Total Stirring Time (ms) Ramp-In Time (ms) Ramp-Out Time (ms) Acceleration Scaling (Dimensionless) Measured Cost
680.111 109.485 84.284 149.316 20±10

Table 5.1: Table summarising best predicted parameters from M-LOOP where optimisation
was performed to a target of 50 vortices using the thin ring configuration. The cost predicted by the
learner for this parameter set is also presented along with the true measured cost for comparison.

from those presented in the table. The cost and its associated uncertainty for the optimum
parameter set may seem large, but one must recall that Eq. (4.1) defines cost as the square
of the error in vortex number. Thus, this optimisation was able to give the vortex shear
number of 50 with at most a variation of 7 vortices (∼ 14% error) as indicated by the cost
in Table 5.1. The size of this error can be attributed to the choice of target vortex number
and the limitation of the linear acceleration profile for stirring. That is to say, optimising to
a target of 50 vortices using linear acceleration stirring might not be achievable experimen-
tally without some excitations. To this end, the machine learning optimisation is considered
successful given the constraints placed on the learner.

Subsequent predictions of optimised parameter sets actually began with large costs as is
shown in Fig. 5.4 for runs 15-30. The machine learning predicted parameters quickly con-
verge back to the low cost optimum set given in Table. 5.1 after each intermediate training
set at runs 15, 20 and 25. There is an emergent pattern in the cost over run number of a spike
in cost due to random training followed by a quick decay back to the optimum parameter set
with low cost. During the last 5 runs of Fig. 5.4 however, convergence is not observed. This
simply suggests that over-training of the learner with runs 15, 20 and 25 begins to adversely
influence the inferred parameters. The final optimised parameters were used to produce the
image in Fig. 5.5. This image contains the desired 50 vortices and the shear layer is clearly
observable. However, some of the 50 total vortices were clearly undesirable excitations and
not part of the shear layer. The reason for this has already been discussed as an effect of
target number choice and constraints on the learner. Therefore, the learner was actually
operating as intended, but the optimisation target was unrealistic.

Such an observation proved useful for subsequent optimisations where lower target num-
bers of 20 and 30 were instead chosen which removed almost all undesirable excitations from
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Figure 5.5: 5 ms TOF image taken with no holding time under the predicted best parameters
in Table. 5.1. There are a total of exactly 50 vortices in the image but some of these are attributed
to excitation which were not completely removed in the optimisation.

the optimisation. Further insight was given into this system by observing vortex dynamics
qualitatively as in Fig. 5.6. The images in this figure are taken at various hold times in
order to observe the dynamics of the shear layer generated by optimistaion. Here, there is a
clear progressive clustering where initially pairs or triplets of vortices are observed at 10 ms
but by 100 ms considerably larger clusters have formed through the combination of smaller
clusters. This is precisely what is expected qualitatively under a superfluid KH instability in-
duced decay to turbulence. Of course, experimental rigor is required to definitively conclude
this with quantitative analysis, but the results under the 50 vortex optimisation are already
promising. However, Fig. 5.6 also highlights some issues in the experimental configuration.

Firstly, there is a clear loss of vortices at long timescales. Subsequent experiments were
constrained to a maximum of around 500 ms hold time to avoid these losses. This will avoid
observing a decrease in cluster number which is actually attributed to vortex losses. Addi-
tionally, the vortex detection algorithm has difficulties in detecting vortices when they are
as tightly clusters as in Fig. 5.6 (c). In such instances, at most one vortex will be detected
when realistically many more are simply in close vicinity. This can be mitigated via the
expansion of the ring to allow the clusters to redistribute in more spread patterns allowing
for more accurate detection. However, making all these corrections to the configuration re-
quired re-optimisation under a larger ring geometry (with dimensions as described in Section
5.1.1).
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Figure 5.6: Qualitative analysis of vortex dynamics under the optimised parameters of Table.
5.1. (a) 0 ms hold time. (b) 10 ms hold time. (c) 100 ms hold time. (d) 2 s hold time

5.1.3 Large Ring Optimisation

Analysis of the machine learner optimised configurations had provided insight into how ma-
chine learning methods should be applied to generate a vortex shear layer. Use of a larger
ring meant that dynamics would be more readily observable. This is because not only would
vortex loss be reduced for timescales relevant to the experiment but the added space in the
larger ring would mean vortex clustering is likely to occur at larger length-scales, which is
beneficial for vortex detection accuracy (likelihood of multiple vortex cores overlapping is
reduced). Using the larger ring configureation however also required optimisation of the
shear layer. Since 50 vortices at the boundary were deemed excessive (optimisation was not
possible under linear acceleration), optimisation was instead performed for 20 and 30 target
vortices. This choice allowed for the velocity shear generated to be large while giving a
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smaller range of initial conditions with which general trends could be discerned. Addition-
ally, comparison between the two cases would allow for analysis about the behaviour of the
shear layer as it nears the classical limit of a continuum of point vortices (see Section 3). Due
to time constraints only these two vortex shear numbers were chosen but future work would
include more initial conditions in order to reinforce general claims about the connections
between the quantum and classical regime of turbulence. Re-optimisation to these vortex
shear numbers was highly successful solely due to the machine learner.

For the 20 vortex case, the same algorithm as employed in Section 5.1.2 was applied to
great effectiveness. Again the cost functions chosen was of the form in Eq. (4.1) here. Fig.
5.7 shows the cost over 10 training runs with the machine learner predicted parameter cost
at the 11th run. Again the initial 10 training runs used randomly generated parameters

Figure 5.7: Plot of the cost over different runs used in optimising the large ring shear layer to
20 vortices. Red asterisk points represent randomly generated parameters used for training while
blue circles represent inferred parameter sets from the GP regression. Error bars as the standard
error of cost in three images.

explaining the scattered cost for the first 10 data points in this plot. There is again indica-
tion that the cost and error are not directly related since high cost runs do not necessarily
have the largest errors. The reasoning for this is as previously discussed; high cost with
low uncertainty points typically represent vortex numbers considerably different from the
target number but with low excitation numbers while lower costs with large uncertainties
represent an excess of undesirable excitations. There is a clear convergence of the data to an
optimum parameter set after the 10 training runs which contained the lowest cost (within
error). The specific parameters are given in Table. 5.2 below: Comparing these values to the
50 vortex shear number parameters, one sees that the changes to the stirring parameters are
difficult to understand intuitively. There is a longer stirring time albeit with a considerably
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Total Stirring Time (ms) Ramp-In Time (ms) Ramp-Out Time (ms) Acceleration Scaling (Dimensionless) Measured Cost
698.210 140.439 164.674 41.906 4±2

Table 5.2: Table summarising best predicted parameters from M-LOOP where optimisation
was performed to a target of 20 vortices using the large ring configuration.

smaller acceleration scaling. Thus, the learner predicts that stirring for longer times with
slower acceleration is preferred under the choice of cost function. The changes in the ramp
times are likely be due to the changes in the geometry of the trap such that a larger ring
requires longer ramp times to prevent undesirable excitations. In addition to the changes in
parameters, there is a clear decrease in the cost under this optimisation.

At most, the error in the vortex number is 3 under this cost. Thus relative error between
the 20 vortex optimisation, ∼ 15%, is similar to that of the 50 vortex optimisation ∼ 14%.
However, absolute error is considerably lower meaning that the vortex shear layer can be
consistently created as desired. An image highlighting optimised shear layer containing 20
vortices is shown in Fig. 5.8. Here there are exactly 20 vortices at the shear layer. Unlike

Figure 5.8: 5 ms TOF image of a 20 vortex shear layer produced using stirring parameters
optimised by the machine learner. There is a clear lack of undesirable excitations in such systems,
so variation in vortex number occurs at the shear layer.

the thin ring optimisation however, the parameter set here did not produce any undesirable
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excitations over the 9 images taken at zero holding time meaning that the variation was
in the shear vortices. Due to this, this optimisation was deemed successful with potential
improvements discussed above for future adaptations. In order to investigate the classical
regime of the vortex shear layer, one final optimisation was required to a target of 30 vortices
at the superfluid boundary. For the final optimisation, Eq. (4.2) was used for the cost in
order to remove the harsh penalty for deviations of few vortices.

The results for the 30 target vortex optimisation are much the same as that of the 20 target
number but are still worth discussing for some observations that can be used to critique the
methods here and provide further improvements for future work. To begin with, a similar
cost over run plot is observed under this final optimisation, which is shown in Fig. 5.9. Note

Figure 5.9: Plot of the cost over different runs used in optimising the large ring shear layer to
30 vortices. Red asterisk points represent randomly generated parameters used for training while
blue circles represent inferred parameter sets from the GP regression. Error bars as the standard
error of cost in three images.

the decreased scale on the cost axis due to the new choice in cost function [Eq. (4.2)]. Here
the learner was also run for longer than a single predictive parameter set since convergence
to an optimum parameter set (with low cost) was not observed. This is evident in Fig. 5.9
where the learner optimised parameter runs actually have higher cost than that of some
random training runs. In this case, the learner simply predicted that the best parameters
were those acquired from the brute-force (random) training runs with the lowest cost. This
lack of convergence could have arisen from a variety of factors, most likely of which is the
choice of parameters. Achieving a specific vortex number at the shear is a complex task and
this complexity is made more difficult by restraining the learner to linear acceleration only.
The simplistic stirring model had so far served sufficiently in generating the shear layer but
optimising to 30 vortices via learning under the set conditions may have proven impossible
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for the GP regression.

The use of more complex stirring profiles in future work could greatly improve accuracy
and convergence of the learner. One potential improvement would be to fix stirring sequence
times but segment the stirring profile into various linear functions. The initial and final
values of each segment could be set as the parameters to generate unique stirring profiles
allowing the learner to more freely optimise to specific numbers. A similar technique has
already been applied by Nakamura et al. [52] to generate unique evaporative cooling ramp
profiles via GP regression. It is important however to highlight yet again that the success of
machine learning in creating a velocity shear in this investigation only requires some manner
of optimisation of stirring. It is not relevant whether brute-force or GP regression is used
since the focus of the investigation is not on the machine learning methods.

The optimised parameters for the 30 vortex shear number is as given in Table. 5.3: Com-

Total Stirring Time (ms) Ramp-In Time (ms) Ramp-Out Time (ms) Acceleration Scaling (Dimensionless) Measured Cost
562.426 157.207 123.271 46.436 3±1

Table 5.3: Table summarising best predicted parameters from M-LOOP where optimisation
was performed to a target of 20 vortices using the large ring configuration.

pared to the 20 vortex optimisation, the stirring time is decreased while the acceleration
scaling is increased. Interestingly, the cost of this optimisation is the similar to the 20 vortex
optimisation performed in the investigation. At most, the 30 vortex shear layer will vary
by just 4 vortices, resulting in a relative error of ∼ 13% making this optimisation the most
consistent at generating the desired shear layer. This is suggestive of the applicability use
of brute-force methods for shear layer optimisation in general. Under the premise of this
investigation, finding some optimised parameter set is considered a success. The optimised
parameters yield images as shown in Fig. 5.10, which shows a complete lack of undesirable
excitations which was a trend followed by other instances of the same parameter set.

Therefore, despite some potential for improvement of the machine learning methods applied,
optimisation to 20 and 30 vortex shear numbers was achieved. Throughout this discussion,
the experimental methods and results were thoroughly critiqued and alternatives for future
extensions of this work were considered. There is clear error in the optimisation to a specific
target number of vortices but this is to be expected within the experimental framework of the
project. The use of machine learning algorithms resulted in a minimisation of this error so
that the subsequent experimental results concerning vortex dynamics could be performed in
a more controlled environment. In fact, the variation of the vortex number was smaller than
predicted by the optimisations here and therefore had little-to-no influence of the dynamics
results as is discussed in the next section. Overall, the use of machine learning optimisation
was greatly beneficial to the project.



52
Transitions to Turbulence in Experimental Bose-Einstein Condensates via

Kelvin-Helmholtz Instabilities

Figure 5.10: 5 ms TOF image of a 30 vortex shear layer produced using stirring parameters
optimised by the machine learner. There is a lack of undesirable excitations in the optimised results.

5.2 Observing Shear Layer Decay

With the ability to efficiently and consistently create vortex shear layers in the experiment,
it was possible to investigate evidence for the superfluid KH instability induced turbulence
in the BEC superfluid systems. The main observations required are as predicted by Bag-
galey & Parker: initial instability of the vortex sheet, followed by a decay/“roll-up” effect
and progressive clustering of the vortices, where the resulting clusters behave as classical
patches of vorticity in a turbulent system [5, 6]. Using the optimised shear layers containing
20 and 30 vortices, both qualitative and quantitative evidence was found in the experiment,
documenting the first experimental observation of a KH instability in a BEC superfluid.
This evidence is shown and analysed here, and suggestions for improvements and further
work are made so as to enhance the results found in this investigation. Additionally, the
multiple shear layer conditions can also further the analogy between classical and superfluid
turbulence induced by the KH instability.

The idea here is that a classical shear layer behaves as a continuum of point vortices, and
so the superfluid case can be made to approach the classical limit with more vortices at the
shear boundary (see Sections 3.2 & 3.3). Qualitative results for using this concept provided
interesting insights into the classical analogs of the clustering behaviour observed. However,
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due to some experimental faults in the experimental data, the 30 vortex shear layer quan-
titative analysis could not be completed and so information about timescales of shear layer
decay and further connecting of the classical analogs could not be performed. Additional
data collection was not able to be completed due to a failure of the experimental apparatus
near the end of the project. Regardless, this section features the most substantial evidence
for the observations of a KH instability in the experiment and for comments about the decay
to turbulence induced by this instability.

5.2.1 Qualitative Analysis of Vortex Dynamics

The simplest evidence found for KH instability induced turbulence in the experimental BEC
superfluids considered here was the qualitative observation of the breakdown of the shear and
progressive clustering over time. It is important to quantify this clustering as is discussed in
Section 5.2.2, but qualitative results are equally as important for constructing intuition and
understanding about a system.

20 Vortex Case

Figure 5.11: Qualitative results for clustering of an initial 20 vortices in the shear layer. Each
image shows the vortex positions at various hold time. Note that each image is a different instance
of an experimental run and each subfigure here is independent of all others. (a) 0 ms hold time.
(b) 90 ms hold time. (c) 190 ms hold time. (d) 320 ms hold time. (e) 400 ms hold time. (f) 460
ms hold time.
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Starting with the initial condition of 20 vortices, the clustering is observed over 460 ms of
hold times (in 10 ms intervals between different hold times). Fig. 5.11 shows some images
from a subset of these hold times which highlight the general trends observed in the vor-
tex dynamics. In this analysis there were 235 images taken (5 images per hold time) and
showing all would be impossible. Instead the general behaviour of the vortices over time can
be discussed. Initially, the velocity shear layer manifests as the line of vortices. Due to the
machine learning optimised stirring parameters, this shear layer consistently contains 20± 1
vortices despite the optimisation predicting a larger error in the vortex creation. Regradless,
the replicability of the initial vortex shear is highly beneficial to the observation of vortex
dynamics. From this initial condition, the shear layer becomes unstable and the vortices are
observed to move away from this equilibrium.

The observation of motion away from the shear layer is indicative some instability inher-
ent in the creation of the shear layer. By observing the transition to turbulence under this
instability, it can be shown that the system exhibits a KH instability. Specifically, by ob-
serving the vortex cluster motion over time, it becomes clear that the analog of the rolling
up of the shear layer in BEC superfluids is present. This motion becomes apparent at ap-
proximately 90 ms when some vortices seem to pair together in small clusters. This is shown
in Fig. 5.11 (b), where the clustering is most obvious on the right side of the superfluid ring
which contains multiple pairs of vortices. In this image, the left side of the ring seems to still
be at equilibrium despite the hold time. This is simply an artifact of choosing this particular
image, since other images at the same hold time showed clustering in different regions of the
ring with other sections remaining at equilibrium.

Suggestive of the turbulence introduced through an instability were small deviations of the
initial conditions between images results in different outcomes at the same hold times. De-
spite this chaotic behaviour, each image at or near 90 ms hold time displays the emergence
of several two-vortex clusters. After some more holding time has passed, all vortices seem
to shift from their initial positions and the emergence of larger clusters of vortices is clear
as shown in Fig. 5.11 (c). This image is taken at 190 ms hold time and exhibits not only
pairs of vortices near the bottom of the image, but clusters of three vortices on the left and
right sides of the ring. It becomes difficult to discern where the equilibrium ring of vortices
was initially located due to how much the vortices cluster at long hold times.

It is important to note that qualitative analysis of clustering becomes complicated at this
point due to the bias inherent in human classification of clusters. In Fig. 5.11 (c) the top
of the image contains a line of vortices which could either be classified as a cluster of four
or two clusters of two and such extended cluster objects were observed commonly in the
experiment. This simply highlights the need for a quantitative measure of clustering so that
there is some standard measure of classifying clusters. Nonetheless, this qualitative analy-
sis has so far been instructive on general trends of the vortex dynamics. Continuing with
the discussion, at later times in the experiment, images indicate the expected progressive
clustering; lower cluster numbers with increased vortex numbers per cluster. Fig. 5.11 (d-f)
show considerable changes in the clusters from all previous hold times. Here there is clear
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evidence of the smaller clusters merging as would be expected in freely decaying 2D turbu-
lence within a BEC superfluid.

Over this set of images, the emergence of progressively larger clusters is an important feature,
but it is important to again note the bias in human qualitative analysis which complicates
commenting on the actual cluster number or size. Even so, starting from 320 ms hold time
in Fig. 5.11 (d) one sees multiple instances of clusters comprised of three vortices and even
a potential cluster of four vortices on the left side of the ring. Subsequently, at 400 ms
hold time there seem to be four clusters in total comprised of up to five vortices, distributed
along the axial direction in an almost equally spaced fashion. This is reminiscent of a similar
ring trapped BEC GPE simulation by Baggaley & Parker in which the vortex clusters were
similarly distributed (see Ref. [5]).

In this experimental system however, imperfections in the trap go beyond simple noise
introduced to the system; there are imbalances and shot-to-shot variations which make gen-
eralisations difficult. Indeed, the distributions of the clusters only resembled this equally
spaced configuration in this single image at 400 ms, suggesting that such a distribution is
coincidence rather than a property of the instability. However, the level of variation is again
suggestive of turbulent/chaotic behaviour emerging from slightly varying initial conditions.
The final set of images were taken at 460 ms, one of which is shown in Fig. 5.11 (f). Here
a range of clusters are observable, from pairs to considerably larger vortex numbers. Using
vortex detection on this set of images allows for the reconstruction of the approximate stream
profile of the superfluid via COMSOL (see Section 4.3).

The outcomes of the COSMOL simulation [44, 45] are shown in Fig. 5.12, which highlights
the velocity flow field as arrows and streamlines as contours of the flow field1. Additionally,
the velocity of the fluid at the positions of the vortices diverges, and so an upper limit is
imposed to remove the vortex cores. As a side effect, this upper limit ensures that the vor-
tices are more visible in Fig. 5.12. The colour scale indicates flow speed in the superfluid.
Thus, using the tools available in the simulation it becomes possible to observe the decay
of the shear layer into turbulence more directly. Under the initial condition of 20 vortices
at the shear layer, the flow is clearly laminar as indicated by Fig. 5.12 (a). Here, the line
of vortices is at equilibrium and the streamlines are just concentric circles in space. The
streamlines near the shear layer do exhibit slightly complex behaviour such as a wrapping
effect around the vortex cores as is expected but otherwise the streamlines indicate laminar
flow. Aside from the flow velocity near the central repulsive barrier and at the shear layer,
the flow velocity magnitude is somewhat uniform or with very gradual variation over space.
Between vortices at the shear layer the flow is zero which indicates that all vortices are of

1Note that the COMSOL simulation only computes the fluid flow resulting from the presence of vortices.
Hence, the background superfluid flow is not present in Fig. 5.12. However, given that the areas of the
two channels used in the experiment are approximately equal and that the acceleration of the stirring in
each channel is equal in magnitude but opposite in direction, conservation of angular momentum requires
no residual rotation of the fluid due to stirring. Under this argument Fig. 5.12 accurately approximates the
total flow field of the experimental system. Otherwise, future work from this project will investigate any
overall rotation inherent from the stirring.
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Figure 5.12: Streamlines (white contours) and flow velocities (black arrows) for the experi-
mental images shown in Fig. 5.11. Streamlines were generated in COMSOL, treating the vortices
(white points) as point sources of an electric field where the resulting potential approximates the
streamfunction of the superfluid. Colour-scale indicates fluid flow speed in µm/s, with darker
shaded regions representing faster flow. An upper limit is imposed on the flow velocity scale in
order to visualise vortices, where the velocity diverges. (a) 0 ms hold time. (b) 90 ms hold time.
(c) 190 ms hold time. (d) 320 ms hold time. (e) 400 ms hold time. (f) 460 ms hold time.

the same charge and hence the induced flow fields at these points cancels.

After 90 ms hold time, in Fig. 5.12 (b), there is a destabilisation of the shear layer which
causes the streamlines to exhibit a growth in complex behaviour. Specifically, there are
now streamlines surrounding two or more vortices, which constitute a cluster. The decay
of the shear layer is evident in the new streamlines, but away from the shear layer there
is mostly uniform streamline behaviour indicating laminar flow. Hence, the transition to
turbulence has begun but the growth of the perturbations seeded into the shear layer by
the KH instability is not sufficient to cause a complete decay into turbulence. Yet, as hold
time is increased, there are clear indications of the emergence of turbulence. At 190 ms,
in Fig. 5.12 (c), there is a visible clustering effect with streamlines surrounding pairs (and
even up to triplets) of vortices. Noticeably, the flow speed is no longer uniform around the
ring geometry and instead exhibits patches of higher and lower velocity to the previous hold
times. Yet, the flow away from the clusters remains seemingly laminar as indicated by the
field arrows maintaining their directionality. Overall, there is a slow transition to turbulence
visible which becomes apparent in the subsequent hold times of Fig. 5.12 (d-f).
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In these images, there are obvious streamlines surrounding clusters containing four or more
vortices and the uniformity of the flow field is all but destroyed. Patches of high/low velocity
are seemingly randomly occurring around the system. The flow field arrows no longer indi-
cate two separate, counterflowing streams and now exhibit a highly complex profile. This
effect is most obvious at the latest hold time in Fig. 5.12 (f), where the cluster on the left
contains a high number of vortices bound by streamlines. In this flow field, there is clear
turbulent behaviour near the clusters indicated by the rapidly varying velocity field arrows
and streamline contours. Although nearly vanishing, there is however still some laminar flow
at the edges of the system indicating that not enough time has passed for a complete decay
into turbulence. Despite this insufficient hold time length, the COMSOL simulations show a
seemingly classical fluid system as the vortex clusters appear as patches of classical vorticity.
The streamline contours around the clusters are typical of classical vortices, similar to the
work by McWilliams (see Section 3.3). Thus, the qualitative results not only indicate a decay
of the shear layer due to a KH instability but also that the turbulence in the system manifest
as vortex clusters begins to exhibit classical behaviour. This is an exciting result as it builds a
deeper connection between a classical turbulent fluid system and superfluid turbulence in 2D.

Overall, there lies considerable evidence of the KH instability induced turbulence mani-
festing in this experimental BEC superfluid. The expected trends predicted by Baggaley
& Parker are observable and there is even evidence for the clusters exhibiting turbulent
behaviour due to the variation at each hold time. Thus, the qualitative results are clearly
indicative of not only a KH instability inherent in the shear layer, but a transition to turbu-
lence in the quantum system via progressive clustering of vortices which behaves analogously
to classical vorticity.

30 Vortex Case

These arguments are only further strengthened by identical observations under a 30 vortex
shear layer. It becomes important to consider the 30 vortex shear layer case not only for
comparison of observations about the shear layer decay but also as an attempt to approach
the continuum limit so as to better connect observations in this quantum system to a classi-
cal shear layer. The observation of the dynamics of this 30 vortex shear layer was performed
over a shorter timescale than the previous results. This was due to the fact that (at least
qualtiatively) the clustering effects in this system seemed to occur faster. Overall, 180 images
were acquired, with 5 images for each hold time from 0 to 340 ms (spaced apart by 10 ms
intervals as before). Select images are shown in Fig. 5.13 which highlight the general trends
of the data set. The initial conditions showed slightly more variation in the vortex number
over the five images as 30 ± 3 vortices were detected. There was occasionally the presence
of a single excitation in these images which highlights the influence of improperly optimised
on the shear layer. After only 30 ms holding time, the pairing up effect of the shear layer
vortices was observable as in Fig. 5.13 (b). Subsequent holding times actually illustrate the
progressive clustering much clearer in this 30 vortex system. After only 110 ms hold time,
the vortex clusters were clear and comprised of over 3 vortices on average. The final three
images in Fig. 5.13 show the progressive emergence of what seems to be a mega-cluster at
340 ms which was consistently observed over the set of 5 images at this hold time. This
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Figure 5.13: Qualitative results for clustering of an initial 30 vortices in the shear layer. Each
image shows the vortex positions at various hold time. Note that each image is a different instance
of an experimental run and each subfigure here is independent of all others. (a) 0 ms hold time.
(b) 30 ms hold time. (c) 110 ms hold time. (d) 240 ms hold time. (e) 310 ms hold time. (f) 340
ms hold time.

mega-cluster is comprised of a large number of vortices and its spatial extent seems to be
about a quarter of the ring area visually.

Collectively with the 20 vortex system, these qualitative results are highly suggestive of
the KH instability analog being the mechanism through which turbulence is introduced
experimentally in this work. Not only do the images of the experimental system exhibit ev-
idence of progressive clustering, but the behaviour of the clusters is reminiscent of classical
vortices in turbulent systems due to the combination of shot-to-shot variation and consistent
decreasing in cluster number with increasing cluster spatial extent. As discussed in Section
3.2, turbulent systems with vortices exhibit a decay in vortex number and increase in vor-
tex size which is analogous to the cluster number decay and cluster spatial extent observed
qualitatively here.

Thus, the 30 vortex shear layer also exhibits a KH instability which causes decay in the
layer leading to the emergence of turbulence in the system. Unlike the 20 vortex shear layer
case however, the timescale of the shear layer decay is considerably faster in the higher vortex
initial condition. Specifically, the emergence of pairs of vortices is observable at around 30
ms in the 30 vortex shear layer results which is considerably faster than pairing observation
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at 90 ms in the 20 vortex shear layer. Similar effects are qualitatively observed for various
cluster structures and the general trend is that clustering (and therefore the decay to turbu-
lence) occurs considerably faster with a larger velocity shear layer. This is in fact analogous
to how slower shear velocities in a classical system lead to the offset of the manifestation of
turbulence throughout the system (see Section 3.1). This analogy strengthens the connection
between a superfluid system and classical system undergoing a transition to turbulence via
a KH instability.

Unfortunately, experimental faults lead to the images for the 30 vortex shear layer to contain
considerable noise. This meant that vortex detection was not possible due to low accuracy of
the Gaussian blob algorithm in these conditions. Hence, producing a COMSOL simulation
of the stream profile for the 30 vortex shear layer was not possible and neither was any
quantitative analysis of this system. As mentioned above, additional data collection was
not possible due to experimental apparatus failure. Regardless, the 30 vortex shear layer
provided excellent support for the claims made about the results of the 20 vortex shear layer
above.

However, in order to investigate whether the different vortex shear layers begin to exhibit
classical behaviour, quantitative results about the clustering and timescales of shear layer
decay are required. At this stage, there is clear evidence of the presence of a KH instabil-
ity. There is also considerable qualitative evidence for the superfluid KH instability driven
turbulence in this experiment, but for better understanding of the mechanisms behind KH
instabilities (in both classical and superfluids), a rigorous quantitative analysis is required.

5.2.2 Quantitative Analysis of Vortex Dynamics

Quantitative analysis of vortex cluster dynamics is possible through the DBSCAN sorting
algorithm as prescribed in Section 4.3 and through similar methods as highlighted in the
pseudo-code in Section A.2. The issue with using DBSCAN and its associate global variables
is that clusters of varying density are difficult to sort/detect. The choice of the minimum
points for the core of a cluster (see Section 4.3) is fixed to M = 2 simply due to the fact that
a cluster cannot exist without at least two vortices. The choice for the density scan radius ε
is more difficult to discern. Attempts at automating this choice per image were made via a
nearest neighbour distance calculation. If vortices were found to be within the mean nearest
neighbour distance, they were treated as density-connected points and in this manner the
DBSCAN could construct clusters.

This choice of the density might seem logical but in practice this density lead to the di-
vergence between quantitative outcomes with the qualitative observations highlighted in the
previous section. Specifically, under this choice of ε, the cluster number over time was seen
to begin with one large cluster of vortices since all vortices in the initial ring configuration
were treated as being in one large cluster. Due to this, the first data points illustrated a
system where the cluster number increased in time. In response to this, the vortex number
per cluster started quite large and decreased over time. Even omitting these early hold time
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data points, both these aforementioned quantities were observed to plateau despite obvious
qualitative evidence of progressive clustering. To remedy this, a simplistic approach was
attempted; the choice of ε was fixed for all images. In such a system, the first data points
would show incorrect classifications of cluster number and vortex number per cluster, but
the goal was to observe improvements in the trends of later hold times.

Fixed ε Cluster Sorting

For the initial condition of 20 vortices, the results of the fixed ε = 16 µm DBSCAN are
shown in Fig. 5.14 and Fig. 5.15 which show the cluster number over time and the mean
vortex number per cluster respectively. It should be noted that each data point is the mean
measure of the 5 images taken at the associated hold time. The uncertainty is estimated
via the standard error measurement between the 5 images. The choice of ε was made via
basic observation of cluster spatial extent being on the order 16 µm for late hold times. As
expected, the earlier data points are treated as containing very few but large clusters due to
the vortices near uniform spatial distribution. After 150 ms, the trends in cluster number
and vortex number per cluster begin to align with that of the qualitative results. The fact
that this general trend arises is promising. It is important to note also that this trend is not
manufactured via fixing ε. There is substantial evidence for the decreasing cluster number
over time in a qualitative sense and therefore this correction to the clustering algorithm only
aims to fix errors in DBSCAN and not impose bias on the data set.

Figure 5.14: Plot illustrating the decay of cluster numbers over time with an initial vortex
shear number of 20, according to fixed ε = 16 µm clustering.
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Figure 5.15: Mean vortex number per cluster over time with an initial vortex shear number of
20, according to fixed ε = 16 µm clustering.

Figure 5.16: Log-log plot of cluster number over time with an initial vortex shear number of
20, according to fixed ε = 16 µm clustering. The line of best fit is performed using data points after
the approximate turning point at 150 ms. The linear fit is presented where the slope represents
the power-law scaling for comparison to the classical system of vortices. For the fit, y represents
the logarithm of the cluster number and x represents the logarithm of the time.



62
Transitions to Turbulence in Experimental Bose-Einstein Condensates via

Kelvin-Helmholtz Instabilities

Similar comments can be made on Fig. 5.15 which still exhibits the initial decay of mean
vortex number per cluster up to a turning point after which a monotone increase over time
is observed. Further evidence of vortex number per cluster increasing over time are provided
by the maximum and median vortex number per cluster shown in Fig. A.2 and Fig. A.3 in
Appendix A.3. A promising feature of all these fixed ε clustering plots is that the error bars
for the early hold times are particularly large in comparison to late hold times when the ε
choice is better suited. This illustrates that error in the ε has manifest in the results.

Overall, after 150 ms the expected trends for progressive clustering are evident in these
results. One note to make about this however is that the rate of decay of cluster number or
growth of vortex number per cluster is quite small. That is to say, the power-law scaling of
time for these trends is close to zero. This is most evident in the slope of the log-log plot of
the cluster number over time, shown in Fig. 5.16. The slope of this data (considering only
points after 150 ms) is seen to be negative (as expected due to the decay) but with magnitude
0.16. This is considerably outside the range of −0.7 to −1 as predicted by McWilliams for
classical vortices (which the clusters should mimic in a turbulent system). This divergence
is yet another effect of the fixed ε choice made, indicating that alternative cluster analysis
was necessary. Unfortunately, due to the lack of prior knowledge about how many clusters
any particular image contained, use of algorithms alternative to DBSCAN was not possible
given the time-frame of the experiment. Methods such as Gaussian mixture models [53] and
simpler k-means methods [54] were attempted to no success.

Manual Cluster Sorting

Reluctantly, manual choice of the ε value for each image had to instead be employed. This
was understood to introduce bias into the quantitative results where human preconceptions
about the classification of clusters could introduce error in the analysis. In an abstract sense,
such a bias is inherent in any cluster sorting algorithm, where a given definition of a cluster
is enforced through some mathematical model. Therefore, the use of DBSCAN with manual
human input of ε is not problematic. The algorithm simply acts to remove some bias or
error in the qualitative analysis via mathematical rigor and image recognition.

Given more time however, the investigation would have applied enhanced DBSCAN al-
gorithms such as AA-DBSCAN which automates the choice for ε for each cluster based on
cluster density through the use of grid based cluster sorting [10]. Yet even without the im-
plementation of these enhanced algorithms, the manual clustering method reveals promising
trends in the detection of transitions to turbulence via KH instabilties. Fig. 5.17 and Fig.
5.18 show the cluster number and mean vortex number per cluster over time with the manual
clustering method. Here, the results are exactly as one might expect but whether this is
the artifact of bias and preconceptions about the system or truly reflective of the clustering
effects in the experiment cannot be determined. Fig. 5.17 shows an asymptotically, mono-
tone decreasing trend in the cluster number over time. This result shows a clear decay of
the vortex shear layer over resulting in the introduction of turbulence to the system. Also as
expected, Fig. 5.18 shows the mean vortex number per cluster exhibiting a similar monotone
increasing trend.
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Figure 5.17: Plot illustrating the decay of cluster numbers over time with an initial vortex
shear number of 20, according to manual ε clustering.

Figure 5.18: Mean vortex number per cluster over time with an initial vortex shear number of
20, according to manual ε clustering.
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Further results for the maximum and median vortex number per cluster are shown in Fig.
A.4 and Fig. A.5 in Section A.3. The trend in the mean vortex number per cluster however
seems to follow steps instead of a strictly increasing function of time. This result is similar to
the cluster size growth predicted in Baggaley & Parker which also exhibited step behaviour
[5]. That is to say, there are segments of the decay to turbulence where the structure of the
vortices seems to remain fixed before further decay occurs. Small clusters of two vortices
form on the order of 100 ms, and these pairs of vortices dominate the cluster structure until
a sudden step up is observed at just over 200 ms. At this point three vortex clusters are
dominant until a large step is observed near the end of the data. seemingly the clustering
rate is fast for smaller vortex numbers per cluster. This suggests that longer timescales are
needed to observe the full decay of the shear layer. In addition, this step like behaviour mim-
ics the progressive coalescence of classical vortices as discussed in Section 3.1. Thus, beyond
just providing evidence for the existence of a KH instability in the system, the quantitative
analysis here also illustrates some key connections between clusters of quantum vortices and
classical patches of vorticity in turbulent systems.

Some interesting notes can also be made about the uncertainties in all these plots. Firstly,
the uncertainties on the cluster number over time do not vary greatly between data points
and are of low magnitude. This suggests that the number of clusters observed in each set
of 5 images for different hold times were quite consistent. On the other hand, the error in
the mean vortex number per cluster grows continuously throughout the different hold times.
This reflects a trend in the data where the cluster numbers overall remain consistent but
there is a great divergence in the constitution of the clusters as time passes. Overall, this
means macroscopic structure of the clusters is preserved while the microscopic structure is
strongly dependent on initial conditions seeded by the KH instability. This decay into vary-
ing microscopic structure is actually suggestive of turbulence in the system. Thus, there is
a further evidence for the superfluid KH instability induced turbulence in the experiment.

Connection to Classical Turbulence

Further support for the claim that the clusters of vortices behave as classical patches of
vorticity can be found from the quantitative analysis of the 20 vortex shear layer, via the
derivation of a power-law for cluster number decay. Attempting to derive this power-law scal-
ing under the manual clustering method proves more successful here and is shown in Fig 5.19.

Firstly, the fit is not restricted to a subset of the data, and so it is a stronger represen-
tation of the entire data set. Additionally, the slope of fit which represents the power-law
scaling is comparable to the classical turbulent system of vortices by McWilliams. This
shows evidence for the fact that clusters of quantum vortices whose dynamics are driven
by a KH instability behave as classical vortices in a turbulent system. This evidence acts
to enhance the claims of the qualitative results and shows a deeper connection between the
superfluid KH instability and its classical counterpart. It would be ideal to further the sup-
port found here by considering the 30 initial vortices. Unfortunately, the vortex detection
algorithm cannot to accurately detect vortices and their positions in the data set for the 30
vortex instance. This outcome is unfortunate but the analysis for the 20 vortex data set



5.2 Observing Shear Layer Decay 65

Figure 5.19: Log-log plot of cluster number over time with an initial vortex shear number of 20,
according to manual ε clustering. The line of best fit is performed using all data points. The linear
fit is presented where the slope represents the power-law scaling for comparison to the classical
system of vortices. For the fit, y represents the logarithm of the cluster number and x represents
the logarithm of the time.

already illustrates promising evidence for the observation of transitions to turbulence in the
BEC superfluid approaching the classical shear layer limit.

Already, this section of the results has discussed on improvements which could be made
so that the analysis here can be enhanced in future work. Another addition would be the
retaking of the 30 vortex data set along with other initial conditions. These additional re-
sults would allow for that claims made in quantitative analysis to be strongly supported
with more data (or disputed by potential inconsistencies in data). Multiple data sets would
also allow for the determination of whether power-laws are dependent on the initial vortex
number which itself is directly related to the shear velocity values. This would allow for more
comparisons between transitions to turbulence in superfluid systems and classical fluids.

5.2.3 Final Remarks on the Vortex Dynamics Results

In summary, quantitative analysis of cluster dynamics was only possible for the 20 vortex
initial conditions. Successful cluster sorting was observed under the DBSCAN but care-
ful choices of ε were required to observe quantitative evidence for transitions to turbulence
driven via the KH instability. Some issues which arose in the experimental results were
discussed and suggestions for improvements made but overall the combination of qualitative
and quantitative results indicate clearly a transition to turbulence in the BEC superfluid
which is seeded by the KH instability from the velocity shear layer. The significance of such
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a conclusion is profound since it marks the first experimental observation of a pure BEC
superfluid undergoing transitions to turbulence via the KH instability. The outcomes of the
investigation may be simple but they lay the groundwork for extensions and future work on
superfluid instabilities in BEC systems.

One aspect of the results that is of particular interest for future work based on this project
are the stream profiles generated via COMSOL. Since these simulations allow for the gener-
ation of a continuous flow field, it is possible to repeat the contour analysis from McWilliams
about the decay rate of classical vortices (clusters of quantum vortices) and the growth rate
of the classical vortex sizes. By repeating COMSOL simulations for a range of initial con-
ditions it would be possible to track the emergence and dynamics of vortex clusters and
their surrounding streamlines to see how the results quantitatively compare to the classical
results from McWilliams. This analysis would greatly strengthen claims made about the
connections between quantum and classical turbulence. Unfortunately, this combination of
experimental and computational techniques could not be implemented under the time frame
of the project presented in this thesis but it presents an opportunity and motivated interest
for future work based on this project.



6
Outlook and Conclusion

Overall, this project aimed to investigate the existence of KH instabilities and the proper-
ties of the subsequent transitions to turbulence in a single-component, experimental BEC
superfluid. The phenomena of instabilities and turbulence are key aspects of deriving con-
nections between superfluids and their classical counterparts. The prior literature discussed
in earlier sections of the thesis provided promising background for the success of this endeav-
our and even methods through which stronger connections between classical and superfluid
turbulence could be made. The resulting analysis certainly supports the claim that KH insta-
bilities were observed in the experiment via the conditions predicted by Baggaley & Parker,
marking the first experimental observation of such instabilities in a pure BEC system (to
our best knowledge). Additionally, computational techniques were employed to reconstruct
the flow fields of the experimental BEC systems. The outcomes of these simulations was
that evidence of progressive clustering was more clearly evident and more importantly that
the decay to turbulence in the experiment mimicked closely a classical turbulence system,
where the clusters of quantum vortices behaved as patches of classical vorticity. Thus the
project succeeded not only in observing experimental transitions to turbulence induced by
KH instabilities, but was also able to deepen the connection between classical and quantum
turbulence through its results.

Despite this success, some of the results and analysis could be improved. The first of which
is the retaking of cluster dynamics data for 30 vortices along with new dynamics data at
various other initial conditions. This new data combined with alternative cluster sorting
methods such as the aforementioned AA-DBSCAN would significantly improve the claims
made in the investigation. The new results would also allow investigation of the decay of the
shear layer as the classical limit (continuum of vortices in the layer) is approached. Removal
of human bias in the cluster sorting is necessary to perform a standardised classification of
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turbulent phenomena in the BEC system. Additionally, a precise measure of vortex clus-
ter spatial extent would allow for further analogies to be drawn between the experimental
results and prior work in both superfluids (Baggaley & Parker) and classical vortex sys-
tems (McWilliams). Another minor improvement would be a more focused machine learning
optimisation protocol for future work, including larger amounts of training runs, use of mul-
tiple machine learning algorithms (i.e. neural-networks for comparison to GP regression)
and implementation of more complex parameters to allow for better machine control over
the experiment. Finally, the implementation of the COMSOL stream profile simulations as
quantitative comparisons of superfluid behaviour to classical behaviour would serve to build
understanding between quantum vortex clusters and classical vortices in turbulent systems.
These improvements should be thought of not as failures of the project but as an opportunity
for improvement in future work.

Future work based on the investigation here could go beyond an improvement of the re-
sults. Some potential areas of significance are investigations into multi-component BEC
superfluid instabilities. Using more species of superfluids would allow for the verification of
results found here and potential extension into other instabilities where density variations can
drive transitions to turbulence (i.e. buoyancy-driven instabilities). Other potential future
work could include a focused study on machine learning optimisation of the velocity shear
layer. Another suggestion for future work include extensions into 3D system instabilities,
which would be ambitious but could hold interesting results that furthers understanding of
turbulence in general. Thus, this project establishes the groundwork for exciting future work
that would greatly enhance understanding of superfluidity, turbulence and manifestations of
classical fluid phenomena in quantum systems.
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A.1 Rubidium 87 Hyperfine Structure

Figure A.1: 87Rb Hyperfine structure at the D2 transition level. Left hand lines represent the
energy structure without the Zeeman effect while the right hand show the hyperfine splitting under
a magnetic field. The middle structure shows further frequency splitting in the hyperfine structure
which is not relevant for this experiment. Figure taken from Ref. [11].
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A.2 MATLAB Cluster Analysis Pseudo-Code

1 %Use the vortex d e t e c t i o n a lgor i thm to f i n d vortex p o s i t i o n s
2 %as a matrix whose columns are the (x , y ) components
3 [ p o s i t i o n s , . . . ] = VortexDetect ion ( . . . )
4

5 %Extract (x , y ) coo rd ina t e s as v e c t o r s from the p o s i t i o n s
6 x=p o s i t i o n s ( : , 1 ) ;
7 y=p o s i t i o n s ( : , 2 ) ;
8

9

10 %c o l l e c t (x , y ) p o s i t i o n s in to s i n g l e z=x+iy
11 z=x+s q r t (−1)∗y ;
12

13 %Find the d i f f e r e n c e i s vortex p o s i t i o n s
14 f o r i =1: l ength ( z )
15 f o r j =1: l ength ( z )
16 R( i , j )=abs ( z ( i )−z ( j ) ) ;
17 end
18 end
19

20

21 %compute nea r e s t neighbour d i s t a n c e s f o r each vortex
22 f o r i =1: l ength ( z )
23 nearestNeighbour ( i )=min ( s e t d i f f (R( i , : ) ,R( i , i ) ) ) ;
24 end
25

26

27 %Def ine e p s i l o n as a func t i on o f the nea r e s t neighbour d i s t a n c e s
28 e p s i l o n=f ( nearestNeighbour ) ;
29

30

31 %apply the DBSCAN algor i thm f o r e p s i l o n as de f ined above and M=2
32 c l u s t e r C l a s s i f i c a t i o n=dbscan ( p o s i t i o n s , ep s i l on , 2 ) ;
33

34

35 %Count the number o f c l u s t e r s and number o f v o r t i c e s in each
36 %c l u s t e r t r e a t i n g no i s e po in t s as c l u s t e r s o f s i n g l e v o r t i c e s
37 i f max( c l u s t e r C l a s s i f i c a t i o n )˜=−1
38 %c l u s t e r number
39 clusterNum=max( c l u s t e r C l a s s i f i c a t i o n ) + . . .
40 sum( c l u s t e r C l a s s i f i c a t i o n ==−1) ;
41 %vortex number per c l u s t e r
42 f o r i =1:max( c l u s t e r C l a s s i f i c a t i o n )
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43 s i z e C l u s t ( i )=sum( c l u s t e r C l a s s i f i c a t i o n==i ) ;
44 end
45 i f ismember (−1 , c l u s t e r C l a s s i f i c a t i o n )
46 f o r i i =1:sum( c l u s t e r C l a s s i f i c a t i o n ==−1)
47 s i z e C l u s t ( i+ i i ) =1;
48 end
49 end
50 e l s e
51 clusterNum=sum( c l u s t e r C l a s s i f i c a t i o n ==−1) ;
52 s i z e C l u s t =1;
53 end
54

55 %mean , median and maximum vortex number per c l u s t e r
56 meanClustSize=mean( s i z e C l u s t ( s i z e C l u s t ˜=0) ) ;
57 medianClustSize=median ( s i z e C l u s t ( s i z e C l u s t ˜=0) ) ;
58 maxClustSize=max( s i z e C l u s t ( s i z e C l u s t ˜=0) ) ;
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A.3 Quantitative Data for Clustering of 20 Vortices at

the Shear Layer

Figure A.2: Maximum vortex number per cluster over time with an initial vortex shear number
of 20, according to fixed ε = 16 clustering.

Figure A.3: Median vortex number per cluster over time with an initial vortex shear number
of 20, according to fixed ε = 16 clustering.
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Figure A.4: Maximum vortex number per cluster over time with an initial vortex shear number
of 20, according to manual ε clustering.

Figure A.5: Median vortex number per cluster over time with an initial vortex shear number
of 20, according to manual ε clustering.
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and L. Zdeborová. Machine learning and the physical sciences. Rev. Mod. Phys. 91,
045002 (2019).

[50] P. B. Wigley. Generating and observing soliton dynamics in Bose-Einstein Conden-
sates. Ph.D. thesis, Department of Quantum Science, Research School of Physics and
Engineering, The Australian National University (2017).

[51] P. B. Wigley, P. J. Everitt, A. van den Hengel, J. W. Bastian, M. A. Sooriyabandara,
G. D. McDonald, K. S. Hardman, C. D. Quinlivan, P. Manju, C. C. N. Kuhn, and et al.
Fast machine-learning online optimization of ultra-cold-atom experiments. Scientific
Reports 6(1) (2016).

[52] I. Nakamura, A. Kanemura, T. Nakaso, R. Yamamoto, and T. Fukuhara. Non-standard
trajectories found by machine learning for evaporative cooling of 87Rb atoms. Opt.
Express 27(15), 20435 (2019).

[53] D. A. Reynolds. Gaussian Mixture Models. Encyclopedia of biometrics 741, 659 (2009).

[54] Y. Li and H. Wu. A Clustering Method Based on K-Means Algorithm. Physics Procedia
25, 1104 (2012).


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations & Symbols
	Introduction
	Bose-Einstein Condensates
	Formal defintion of BECs
	Connecting BECs to Superfluids
	Quantum Vortices

	Instabilities in Fluid Systems
	Understanding Classical Instabilities
	The Kelvin-Helmholtz Instability in a Superfluid
	Connecting Superfluid and Classical Turbulence

	Experimental Methods
	Experimental BEC Creation
	Dynamic Control of a BEC Superfluid
	Imaging and Image Analysis
	Faraday Imaging
	Vortex Detection
	Flow field from Vortex Detection
	Vortex Clustering

	Machine Learning Optimisation Concept
	Machine Learning Algorithm
	M-LOOP


	Transitions to Turbulence in Experimental Bose-Einstein Condensates via Kelvin-Helmholtz Instabilities
	Configuring and Applying Machine Learning
	Preparing for Machine Learning
	Thin Ring Optimisation
	Large Ring Optimisation

	Observing Shear Layer Decay
	Qualitative Analysis of Vortex Dynamics
	Quantitative Analysis of Vortex Dynamics
	Final Remarks on the Vortex Dynamics Results


	Outlook and Conclusion
	Appendix
	Rubidium 87 Hyperfine Structure
	MATLAB Cluster Analysis Pseudo-Code
	Quantitative Data for Clustering of 20 Vortices at the Shear Layer

	References

